LNCS 2186

Jan Bosch (Ed.)

Generative and
Component-Based
Software Engineering

Third International Conference, GCSE 2001
Erfurt, Germany, September 2001
Proceedings

4€) Springer

Lecture Notes in Computer Science 2186
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan

Paris

Tokyo

Jan Bosch (Ed.)

Generative and
Component-Based
Software Engineering

Third International Conference, GCSE 2001
Erfurt, Germany, September 10-13, 2001
Proceedings

) Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Jan Bosch

University of Groningen, Faculty of Mathematics and Natural Sciences
Department of Mathematics and Computing Science

P.O. Box 800, 9700 AV Groningen, The Netherlands

E-mail: J.Bosch@cs.rug.nl

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Generative and component based software engineering : third international
conference ; proceedings / GCSE 2001, Erfurt, Germany, September 9 - 13,
2001. Jan Bosch (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong
Kong ; London ; Milan ; Paris ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2186)

ISBN 3-540-42546-2

CR Subject Classification (1998): D.2, K.6, J.1

ISSN 0302-9743
ISBN 3-540-42546-2 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are

liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg
Printed on acid-free paper SPIN: 10840559 06/3142 543210

Preface

The size, complexity, and integration level of software systems is increasing con-
stantly. Companies in all domains identify that software defines the competitive
edge of their products. These developments require us to constantly search for
new approaches to increase the productivity and quality of our software de-
velopment and to decrease the cost of software maintenance. Generative and
component-based technologies hold considerable promise with respect to achiev-
ing these goals. GCSE 2001 constituted another important step forward and
provided a platform for academic and industrial researchers to exchange ideas.

These proceedings represent the third conference on generative and compo-
nent-based software engineering. The conference originated as a special track
on generative programming from the Smalltalk and Java in Industry and Ed-
ucation Conference (STJA), organized by the working group “Generative and
Component-Based Software Engineering” of the “Gesellschaft fiir Informatik”
FG 2.1.9 “Object-Oriented Software Engineering.” However, the conference has
evolved substantially since then, with its own, independent stature, invited
speakers, and, most importantly, a stable and growing community.

This year’s conference attracted 43 submissions from all over the world, in-
dicating the broad, international interest in the research field. Based on careful
review by the program committee, 14 papers were selected for presentation. I
would like to thank the members of the program committee, all renowned ex-
perts, for their dedication in preparing thorough reviews of the submissions.

In association with the main conference, there will be two workshops, i.e. the
GCSE Young Researchers Workshop 2001 (YRW) and a workshop on Product
Line Engineering — The early steps: Planning, Managing, and Modeling. I thank
the organizers of YRW, i.e. Kai Boellert, Detlef Streitferdt, Dirk Heuzeroth,
Katharina Mehner, and Stefan Hanenberg, for their initiative to bring young
researchers together and to provide them with feedback from senior members of
our community. I am also grateful to Klaus Schmid and Birgit Geppert for their
initiative to organize the product line engineering workshop. Software product
lines provide a quickly developing and succesful approach to intra-organizational
component-based software development that deserves much attention.

We are also indebted to this year’s keynote speakers, Ted Biggerstaff and
Oscar Nierstrasz. I am honoured that they accepted the invitation and thank
them for their contribution to GCSE 2001. Finally, I wish to thank all those who
worked hard to make this third conference happen, especially the authors and
the Netobjectday organizers.

I hope you will enjoy reading the GCSE 2001 contributions!

July 2001 Jan Bosch

Organization

GCSE 2001 was co-located with the Net.ObjectDays 2001 conference and held
in Erfurt, Germany, September 10-13.

Executive Committee

Program Chair: Jan Bosch (University of Groningen, The Netherlands)

Publicity Chairs

Europe: Ulrich Eisenecker (University of Applied Sciences
Kaiserslautern, Zweibriiecken, Germany)

The Americas: Greg Butler (Concordia University, Montreal, Canada)

Asia/Pacific: Stan Jarzabek (National University of Singapore, Singa-
pore)

Program Committee

Don Batory (University of Texas, USA)

Greg Butler (Concordia University, Montreal, Canada)

Jim Coplien (Bell Labs, USA)

Krzysztof Czarnecki (DaimlerChrysler AG, Germany)

Ulrich Eisenecker (University of Applied Sciences Kaiserslautern, Zweibriicken,
Germany)

Bogdan Franczyk (Intershop Research, Germany)

Cristina Gacek (University of Newcastle upon Tyne, United Kingdom)

Harald Gall (Technical University of Vienna, Austria)

Gérel Hedin (Lund University, Sweden)

Stan Jarzabek (National University of Singapore, Singapore)

Peter Knauber (Fraunhofer Institute for Experimental Software Engineering,
Germany)

Kai Koskimies (Tampere University of Technology, Finland)

Mira Mezini (Technical University Darmstadt)

Gail Murphy (University of British Columbia, Canada)

Henk Obbink (Philips Research, The Netherlands)

Clemens Szyperski (Microsoft Research, USA)

Todd Veldhuizen (Indiana University, USA)

Kurt Wallnau (Software Engineering Institute, USA)

Table of Contents

Invited Paper

A Characterization of Generator and Component Reuse Technologies 1
Ted J. Biggerstaff

Software Product Lines

A Standard Problem for Evaluating Product-Line Methodologies 10
Roberto E. Lopez-Herrejon, Don Batory

Components, Interfaces and Information Models
within a Platform Architecture i i, 25
Jan Gerben Wijnstra

XVCL Approach to Separating Concerns in Product Family Assets....... 36
Hongyu Zhang, Stan Jarzabek, Soe Myat Swe

Aspects

AspectJ Paradigm Model:
A Basis for Multi-paradigm Design for AspectJ 48
Valentino Vranié

Aspect-Oriented Configuration and Adaptation
of Component Communication., 58
Dirk Heuzeroth, Welf Lowe, Andreas Ludwig, Uwe Afimann

A Version Model for Aspect Dependency Management 70
Elke Pulvermiiller, Andreas Speck, James O. Coplien

An Object Model for General-Purpose Aspect-Languages 80
Stefan Hanenberg, Boris Bachmendo, Rainer Unland

Generic and Generative Approaches

Generic Visitor Framework Computing Statistical Estimators............ 92
Jean-Daniel Nicolet

Base Class Injectiono 106
Douglas Gregor, Sibylle Schupp, David Musser

Reflection Support by Means of Template Metaprogramming 118
Giuseppe Attardi, Antonio Clisternino

VIII Table of Contents

Components and Architecture

Scenario-Based Generation and Evaluation of Software Architectures
Hans de Bruin, Hans van Vliet

The Role of Design Components in Test Plan Generation
Jaehyoun Kim, C. Robert Carlson

Retrieving Software Components Using Directed Replaceability Distance . .
Hironori Washizaki, Yoshiaki Fukazawa

Generating Application Development Environments for Java Frameworks .
Markku Hakala, Juha Hautamdki, Kai Koskimies, Jukka Paakki, Antti
Viljamaa, Jukka Viljamaa

Author Index ...

A Characterization of Generator and Component
Reuse Technologies

Ted J. Biggerstaff

tbiggerstaffe@austin.rr.com

Abstract. This paper characterizes various categories of reuse technologies in
terms of their underlying architectures, the kinds of problems that they handle
well, and the kinds of problems that they do not handle well. In the end, it
describes their operational envelopes and niches. The emphasis is on generative
reuse technologies.

1 Introduction

As an organizing framework for the niches, I will characterize them along two
important dimensions of scaling: 1) how well they scale up in terms of raw size and
thereby programming leverage, which I will call vertical scaling, and 2) how well
they scale up in terms of feature variation, which I will call horizontal scaling. These
two dimensions are typically opposed to each other.

In the course of this analysis for each technology niche, I will describe the key
elements of the technology (e.g., the nature of the component building blocks or
specification languages) and the kinds of operations typical of the technology (e.g.,
inlining or expression transformations). While I make no effort to cover all or even
much of the specific research in these areas, [will identify some illustrative examples.
Finally, I will summarize the strengths and weaknesses of the technologies in each
niche. (See also 3.)

2 Concrete Components

The simplest form of reuse is the reuse of concrete components, which are
components that 1) are written in conventional programming languages, 2) are largely
internally immutable, and 3) represent a one-size-fits-all style of reuse. They include
such categories as functions, Object Oriented classes, generic functions and classes,
frameworks, and COM-like middleware components. They often exhibit serious reuse
flaws such as inadequate performance, missing functionality, inadequately populated
libraries, etc.

They succeed well in a few sub-niches. The first successful sub-niche is very large-
scale components that just happen to fit the programmer’s needs or are designed to a
standard that predestines a good fit. Such components trade customized fit and wide
scale reusability for high programming leverage. They cannot be used in a lot of

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 1-9, 2001.
© Springer-Verlag Berlin Heidelberg 2001

2 Ted J. Biggerstaff

applications but when they can be used, they significantly reduce the programming
effort. The second successful sub-niche is smaller-scale components (e.g., as Ul
components) that can achieve high customization via compositionally induced
variation and yet still exhibit adequate performance in spite of the compositionally
induced computational overhead. While performance is a typical problem of concrete
component reuse, it is often avoided in this sub-niche because of the nature of the
domain. For example in the Ul, relatively poor performance is adequate because the
computational overhead of the one-size-fits-all componentry is masked by other
factors such as human response times. Further, domains in this sub-niche are often
defined by standards (e.g., the Windows UI) for which design tools and aids are easy
to build (e.g., Ul tools). This sub-niche trades performance degradation (which may
be masked) for high levels of customization and substantial programming leverage
within the domain of the sub-niche. The proportion of the application falling outside
the sub-niche domain receives little or no reuse benefit. The third successful sub-
niche is where standards have been so narrowly defined that one-size-fits-all
components are satisfactory. The weakness of this sub-niche is the shelf life of the
componentry since their reusability declines as the standards on which they are based
are undermined by change. Communications protocols are a good example of this
sub-niche.

A serious weakness of concrete component reuse is caused by the restrictions of
conventional programming languages (CPLs). CPLs force early specificity of designs
(e.g., a component’s control structure may be subtly dependent on the structure of a
set of databases). This forcing of early specificity reduces the opportunities for reuse.
Other weaknesses are wrought by the method’s dependence on human involvement in
the reuse and adaptation process.

3 Composition-Based Generators

A fundamental difficulty of concrete components is the tension between optimality
of component fit and the need to scale the components up in size to achieve higher
levels of programming productivity. To address this difficulty, technologies have
been developed to custom tailor the fit by generating custom components from
compositions of more primitive building blocks that capture features orthogonal to the
programming constructs (e.g., orthogonal to OO classes).

Representative of this approach is GenVoca [1]. GenVoca, for example, provides
components from which frameworks of several related classes can be constructed
layer by layer (e.g., a collection framework with the classes container, element, and
cursor). Each layer represents a feature that will customize the classes and methods of
the framework to incorporate that feature. Thus, one layer might define how the
collection is shared (e.g., via semaphores), another might define its physical design
(e.g., doubly linked lists), another might define whether the collection is persistent or
transient and so forth. This allows a fair bit of customization of the detailed
framework design while the higher levels of the application (i.e., the algorithms that
use the collection) can remain generic.

This strategy works well in niches where the part of the application behind the
interfaces varies over such features while the central application core is generic with
respect to the features. For example, different operating systems, middleware, and

A Characterization of Generator and Component Reuse Technologies 3

databases often induce such interface-isolated variation within application classes.
The feature-induced variations in the generated components are largely a local
phenomenon that does not induce too much global variation in the application as a
whole nor too much interdependence among distinct features.

Such reuse strategies are fundamentally based on substitution and inlining
paradigms that refine components and expressions by local substitutions with local
effects. Their shortcomings are that global dependencies and global reorganizations
are either not very effective or tend to reduce the optimality of fit introduced by using
feature-based layers. If the architectures vary more broadly or globally than such
features can deal with, other approaches are required.

Recent work [2, 10] attempts to extend the method to allow greater levels of
application customization by further factoring the layers into yet smaller components
called roles. Roles can be variously composed to effect greater parameterization of
the classes and methods comprising the layers. Fundamentally, role-induced
variations manifest themselves as 1) inheritance structure variations and 2) mixin-like
variations and extensions of the classes and methods comprising the layers.

The main weakness of composition-based generators is the lingering problem of
global inter-component dependencies and relationships, a problem that is amplified by
the fact that the specification languages are largely abstractions of conventional
programming languages (CPLs). That is, the control and data structures of CPLs
predominate in the specifications. While these structures may be ideal for
computation, they are often ill suited for specification. Specifications are easiest to
compose, transform and manipulate when they have few or no dependencies on state
information, on computational orderings, and on other CPL structures that are
oriented to Von Neumann machines. Unfortunately, the abstracted CPL component
specifications of this niche induce global dependencies that require globally aware
manipulation of the programs, a task that is fundamentally hard to do. These global
dependencies often require the structure of the generated application to be
manipulated in ways (e.g., merging iteration structures of separate components) that
are determined by the particular combination and structure of the inlined components.
Such dependencies often require highly customized application reorganizations (or re-
weavings) that occur after the composition step is completed. Such manipulations are
not easily accomplished on program language-based components that are assembled
by simple composition and inlining strategies (even on those PL. components that are
somewhat abstracted).

4 Pattern-Directed Generators

Pattern-directed (PD) generators [8] allow greater degrees of customization
(horizontal scaling) than composition-based generators because they use domain
specific language (DSL) components that are less rigidly constrained than the CPL-
based components. For example, a DSL may have domain operators with implicit
iteration structures that can be combined and optimized in an infinity of problem
specific ways late in the generation process. In contrast, CPLs are biased toward
explicit expression of iterations, which limits the level of feasible customization and
forces the component builder to make early and overly specific design choices. In

4 Ted J. Biggerstaff

short, CPLs necessitate early binding of detailed design structures whereas DSLs
allow late binding.

PD generators divide the world into domains each of which has its own mini-
language (e.g., the relational algebra) in which components can be defined. The mini-
languages are typically prescriptive (i.e., operational) rather than declarative. The
generation paradigm is based on rules that map from program parts written in one or
more mini-domain language into lower level mini-languages recursively until the
whole program has been translated into the lowest level mini-domain of some
conventional programming language (e.g., C, C++, or Java). Between translation
stages, optimizations may be applied that reorganize the program for performance.

These techniques achieve significantly greater degrees of custom component fit for
the target application (i.e., horizontal scaling) while simultaneously allowing scaling
up the size of the components. However, the cost is (sometimes) reduced target
program performance because while the rules that reorganize and optimize the
program at each stage can, in theory, find the optimal reorganization, the search space
is often very large. So in practice, target program performance is sometimes
compromised. Nevertheless, there are many application domains for which the
performance degradation is not onerous or may be an acceptable tradeoff for the
vastly increased programming leverage. The CAPE system [8] for generating
communications protocols, which is based on DRACO, is an example of a domain
where the tradeoff is acceptable.

5 Reorganizing Generators

Reorganizing generators extend the pattern-directed generator paradigm by
attacking the program reorganization problem so that the optimizing reorganizations
can be accomplished without significant search spaces. [4, 5] The trick is the
introduction of tag-directed (TD) transformations that are triggered based on tags
attached to the program components. The tags anticipate optimizations that are likely
to succeed once the program is finally translated into a form closer to a conventional
programming language. They allow optimization planning to occur in the problem
domain and execution of the optimizations to occur in the programming domain. They
reorganize the target program for high performance execution and do so without
engendering the large search spaces that pure pattern-directed generators often do.

I have built a system in LISP called the Anticipatory Optimization Generator
(AOG) to explore this approach. Fundamentally, AOG allows the separation of the
highly generic, highly reusable elements of an application from the application
specific, not so reusable elements. AOG provides methods to weave these generic and
application specific elements together into a high performance form of the application
program. This approach recognizes that an application program is an integration of
information from many sources. Some information is highly general and (in principle)
applicable to many specific application programs that fall into the same product line
of software (e.g., payroll programs). For example, the formula

Pay (Employee, PayPeriod) = Salary(Employee) *
HoursWorked (Employee, PayPeriod)

A Characterization of Generator and Component Reuse Technologies 5

represents a conceptual domain relationship among the concepts Pay, Employee,
Salary, HoursWorked, and PayPeriod. Further, one can define
specializations of this conceptual relationship that account for various kinds of pay,
various kinds of employees (e.g., salaried versus hourly), and various kinds of pay
periods (e.g., regular, overtime, and holiday). Such relationships are highly reusable
but, of course, they are not yet code. That is, they are not directly reusable constructs.
In general, they cannot be cast directly into acceptable code by simple substitution
paradigms (e.g., inlining) because if we incorporate information about the specific
databases, for example, we will find that this simple relationship gets changed and
woven into programming structures that obscure its clean simple structure. For
example, several of the data fields may (or may not) come from the same database
(e.g., employee identification, salary, record of hours worked for various pay periods).
However, for those data fields that do come from the same database and potentially,
the same record in that database, the generated code should be organized to minimize
accesses to those fields that are in the same record of a database (e.g., access to the
employee identification and the employee address, which might be required if the
check is to be mailed, or access to employee identification and the employee’s bank
identification, which might be required if the check is to be direct deposited). Such
accesses are likely to be independently (and redundantly) specified in the component
specifications and therefore, they will likely be generated in separated areas of the
target code. Such redundancies must be identified and removed in the application
code. Similarly, sequential dependencies (e.g., the requirement to first get an
employee id in order to get the address of that employee) will have to be reflected
properly in the control structure of the resulting code. Neither requirement is easy to
accomplish with simple composition, inlining, and simplification technologies.

AOG addresses such problems by introducing a new generator control structure
that organizes transformations into phases and adds a new kind of transformation (i.e.,
a tag-directed transformation) that is particularly well suited to the task of reweaving
components to assure global relationships and constraints like those imposed by
specific graphics, database, UI or web structures.

Because AOG does so much program reorganization, thereby creating redundant
and abstruse program structures, simplification is a big part of many optimization
steps. AOG uses a partial evaluator to perform straightforward simplifications (e.g.,
arithmetic and logical reductions). It uses a Prolog-like inference engine to execute
those simplifications that require some inference (e.g., generating the simplest form of
loops derived when a single loop is split into special case and non-special case forms
of the loop).

The AOG reusable library contains different kinds of reusable components:

= Pattern-Directed Transformations
o Object-Oriented Pattern-Directed (OOPD) Transforms
o Operator Definitions
o ADT Methods

= Tag-Directed Transformations

= Dynamic Deferred Transformations

= Type Inference Rules

All PD transformations have the same conceptual and internal form:

XformName, PhaseName, TypeName :
Pattern = RewrittenExpression, Pre, Post

6 Ted J. Biggerstaff

The transform’s name is XformName and it is stored as part of the
TypeName object structure. It is enabled only during the PhaseName phase.
Pattern is used to match an AST subtree and upon success the subtree is
replaced by RewrittenExpression. Pre is the name of a routine that checks
enabling conditions and performs some bookkeeping chores (e.g., creating translator
variables). Post performs various computational chores during the rewrite. Pre
and Post are optional.

The various kinds of PD transforms are expressed in slightly different external
forms to allow AOG to do some of the specification work for the programmer where
defaults such as PhaseName are known. For example, the definition of the graphics
convolution operator @ (sum of products of pixels and weights) might look like a
component named Bconv where the default PhaseName is known and the default
storage location (i.e., TypeName) is determined by the specific operator @. Bconv
would be expressed as:

(DefComponent Bconv (@ ParameterListPattern)
(X, -..sum of products expression...))
On the other hand, a trivial but concrete example of an OOPD would be

(= FoldZeroXform SomePhaseName dsnumber ~(+ ?x 0) ~?x)

This transform is named FoldZeroXform, is stored in the type structure of
dsnumber, is enabled only in phase SomePhaseName, and rewrites an expression
like “(+ 27 0)” to “27”. In the pattern, the pattern variable “7x” will match anything in
the first position of expressions of the form “(+ __ 0).

AOG uses the various PD transformations to refine abstract DSLs to more specific
DSLs and eventually to CPLs. However, it organizes the PD transforms by phases
where each phase will perform a small step of the overall refinement. For example,
the PD transforms of one phase introduce loops implied by the operators such as @
and then move and merge those loops to minimize redundant looping.

On the other hand, TD transforms are used to accomplish various kinds of
optimizations such as architectural shaping, which alters the structure of the
computation to exploit domain knowledge of the hardware, middleware, or data. For
example, the SplitLoopOnCases transformation shapes a loop that is doing a graphics
image convolution operation so that the loop can exploit the parallelism of the Intel
MMX instruction set. It recognizes the case where the body of the loop is a case-
based if-then-else statement that depends on the loop indexes and splits the single
loop into a series of loops each of which handles a single case. The SplitLoopOnCases
optimization produces code that allows the pixel data to flow on the computer’s data
bus in chunks uninterrupted by conditional branches. This speeds up the overall
convolution. For example, it would split a loop like

for(i=0, j=0; i<m && j<n; 1++, J++)
if(i==0 || j==0 || i==(m-1) || J==(n-1))
...then case...;
..else case...;

A Characterization of Generator and Component Reuse Technologies 7

into loops like

for(j=0; j<n; j++)...then case with i=0...;

for(j=0; j<n; j++)...then case with i=(m-1) ;

for(i=0; i<m; i++)...then case with j=0...;

for(i=0; i<m; i++)...then case with j=(n-1). ;

for(i=1, j=1; i<(m-1) && j<(n-1); i++, j++)
...else case...;

These new forms of the loop are dealing with separate sections of the image
separately. The first four special case loops are operating on the edge pixels in the
image (i.e., top, bottom, left and right) and the else-case loop is operating on the non-
edge pixels in the image. Subsequent TD transformations will shape the else-case
loop body into forms that can be directly translated to MMX instructions. The
resulting code of the then-cases will often simplify significantly under partial
evaluation because of the constants that are substituted for i and j (e.g., O for 1).

Architectural shaping transformations attempt to exploit as much retained domain
specific information as they can. In this case, the tag that triggered the
SplitLoopOnCases transformation contains the knowledge that the loop will be
performing a computationally intense convolution operation and that such operations
lend themselves to the parallelism of the MMX instructions. This knowledge allows a
very focused and purposeful restructuring of the code.

Dynamic deferred transformations are part of specialized machinery for moving
generated code to contexts that do not yet exist when the code is generated. Type
inference rules are specialized transforms that infer the types of expressions for use in
finding applicable transformations to apply.

For a contrasting approach, the reader may want to explore Aspect Oriented
Programming. [6, 7] This approach has similar reorganization or reweaving objectives
but differing implementation machinery.

Reorganizing generators, like PD Generators, are well suited for translating domain
specific languages (DSLs) and because the DSLs can be quite abstract, they can
generate a lot of functionality for a small amount of specification (high vertical
scaling). In addition, they achieve a more optimal fit (high horizontal scaling) within
the application than with composition-based systems because, like PD generators,
they are composing DSL abstractions rather than the more concrete CPL abstractions.
Each DSL abstraction refines in combinatorially many ways at each DSL level based
on the particular DSL abstractions with which it is composed. Moreover,
reorganizing generators solve a problem that has long plagued PD generators -- that of
achieving context specific optimizations without a generator search space explosion.
Those combinatorially many choices at each DSL level that provide the desirable
horizontal scaling also tend to foster the generation of complex and convoluted code,
which may have unacceptable performance. Attempting to solve this performance
problem using global soups of transformations, as PD generators do, often leads to a
search space explosion and for many domains is not feasible. The trick of using tags
to retain key domain knowledge and use that knowledge to guide the process of
optimization vastly reduces the search space and leads to a focused and purposeful
optimization process with very little search involved.

8 Ted J. Biggerstaff

6 Inference-Based Generators

These generators lean toward more declarative specifications that require general
inference engines to re-structure the pieces into prescriptive code. [9] The downside is
that domain engineering is more challenging than in previous cases and therefore,
only a few highly specialized domains have been developed. Nevertheless, such
generators can create the most highly customized (i.e., horizontally scaled) target
programs with target program performance that can be superior to hand-tailored
code.

7 Conclusion

Table 1. Characterization of Reuse Catagories

Niche Key Elements Key Operations
Concrete Reuse Programming Hand Assembly
Language Basis
Composition- Abstracted Inlining & Simplification
Based Generators | Programming
Languages

Pattern-Directed
(PD) Generators

Domain Specific
Languages (DSLs)

Pattern-Directed (PD)
Transformations & Weak Inference
Methods

Reorganizing
Generators

Tagged DSLs

PD and Tag-Directed
Transformations & Domain Specific
Inference Methods

Inference-Based
Generators

Formal Specification
Languages

Heavy Dependence on Fully General
Inference Methods

Table 1 summarizes the essence of these niches. As we proceed up the niche list,
we find that the technologies have an increasing ability to do more of the
programming work (vertical scaling) and an increasing ability to produce more
customized solutions (horizontal scaling). The price for this scaling is that successive
technologies require a greater up front investment in domain analysis and reuse
library creation. For a detailed look into some representative generator systems, see 6.

A Characterization of Generator and Component Reuse Technologies 9

References

. Batory, Don, Singhal, Vivek, Sirkin, Marty, and Thomas, Jeff, "Scalable Software
Libraries," Symposium on the Foundations of Software Engineering. Los Angeles, CA,
December, 1993.

. Batory, Don, and Martin, Jean-Philippe, “An Algebraic Foundation for Program
Automation,” Personal Communication, 2001.

. Biggerstaff, Ted J., "A Perspective of Generative Reuse," Annals of Software Engineering,
5, 1998, pp. 169-226.

. Biggerstaff, Ted J., “Fixing Some Transformation Problems,” Automated Software
Engineering Conference, Cocoa Beach, Florida (1999).

. Biggerstaff, Ted J., "A New Control Structure for Transformation-Based Generators," In
Software Reuse: Advances in Software Reusability, Vienna, Austria (Springer Lecture Notes
in Computer Science, June, 2000).

. Czarnecki, Krzysztof and Eisenecker, Ulrich, Generative Programming, Addison-Wesley,
2000.

. Kiczales, Gregor, Lamping, John, Mendhekar, Anurag, Maede, Chris, Lopes, Cristina,
Loingtier, Jean-Marc and Irwin, John: Aspect Oriented Programming. Tech. Report SPL97-
08 P9710042, Xerox PARC (1997)

. Neighbors, James M., "Draco: A Method for Engineering Reusable Software Systems." In
Ted J. Biggerstaff and Alan Perlis (Eds.), Software Reusability, Addison-Wesley/ACM
Press, 1989, pp. 295-319. (See also http://www.bayfronttechnologies.com| for more
information on DRACO and CAPE.)

. Smith, Douglas R., "KIDS-A Knowledge-Based Software Development System," in
Automating Software Design, M. Lowry & R. McCartney, Eds., AAAI/MIT Press, 1991,
pp.483-514.

10.VanHilst, M. and D. Notkin, “Using C++ Templates to Implement Role-Based Designs”,

JSSST International Symposium on Object Technologies and Systems (ISOTAS'96), 1996.

http://www.bayfronttechnologies.com/

A Standard Problem for Evaluating Product-Line
Methodologies

Roberto E. Lopez-Herrejon and Don Batory
Department of Computer Sciences
The University of Texas
Austin, Texas 78712

{rlopez,batory } @cs.utexas.edu

Abstract. We propose a standard problem to evaluate product-line methodolo-
gies. It relies on common knowledge from Computer Science, so that domain-
knowledge can be easily acquired, and it is complex enough to expose the funda-
mental concepts of product-line methodologies. As a reference point, we present
a solution to this problem using the GenVoca design methodology. We explain a
series of modeling, implementation, and benchmarking issues that we encoun-
tered, so that others can understand and compare our solution with theirs.

1 Introduction

A product-line is a family of related software applications. A product-line architecture
is a design for a product-line that identifies the underlying building blocks or compo-
nents of family members, and enables the synthesis of any particular member by com-
posing these components. Different family members (product-line applications) are
represented by different combination of components. The motivation for product-line
architectures is one of economics and practicality: it is too expensive to build all possi-
ble family members; it is much cheaper to build components and to assemble desired
family members from them.

Many methodologies have been invented to create product-line architectures (e.g., [2,
3,7,9, 11, 12, 13, 14, 17, 20]). Unfortunately, the state-of-the-art is immature. We are
unaware of any attempts to evaluate different methodologies on a common set of prob-
lems. If this were done, we would understand better the strengths and weaknesses of
different methodologies. We would know when to use a particular methodology, and
when not to. Further, we would know if different methodologies relied on the same
concepts. For example, different OO design approaches rely on a common conceptual
foundation of classes, interfaces, and state machines, but offer different ways of pro-
ducing a design expressed in terms of these concepts. For product-line methodologies,
we generally do not know even this. Different methodologies have rather different
meanings for the terms “architecture”, “component”, and “composition” so that it is
not at all obvious what, if anything, is in common. It is not evident that the same con-
cepts are shared among product-line methodologies, let alone knowing what these con-
cepts are. From a practical standpoint, the choice of which methodology to use in a
situation is dictated by convenience (at best) or by random selection (at worst) rather
than by scientific fact. This is unacceptable.

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 10-24, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Standard Problem for Evaluating Product-Line Methodologies 11

For this area to mature, it is essential that we compare and evaluate proposed method-
ologies. The scientific principles that underlie this area must be identified and the con-
tributions and novelties of different methodologies be exposed in a way that all can
appreciate and recognize. The immaturity of this area is not unique and has occurred in
other areas of Computer Science. In such cases, a standard problem has been proposed
and different authors have applied their methodologies to solve it (e.g., [1]). Doing so
exposes important details that would otherwise be overlooked or misunderstood. Such
studies allow researchers to more accurately assess the strengths, benefits, commonali-
ties, and variabilities of different methodologies. We believe this approach would be
beneficial for product-lines.

In this paper, we propose a standard problem for evaluating product-line methodolo-
gies. We believe a standard problem should have the following characteristics:

® [t draws on common knowledge from Computer Science, so that the often difficult
requirement of becoming a domain expert or acquiring domain-expertise is mini-
mized.

® [tis not a trivial design problem; it is complex enough to expose the key concepts
of product-lines and their implementation.

These characteristics should enable others to see the similarities and differences
among approaches both at a superficial level and more importantly, at a deeper concep-
tual level.

To carry this idea forward, we present as reference point a solution to this problem
using the GenVoca design methodology. We outline a set of design, implementation,
and benchmarking issues that we had to resolve before we settled on our final design.
Doing so exposed a variety of concerns and insights that we believe others would ben-
efit hearing. Our designs, code, and benchmarks are available at a web site (http://
www.cs.utexas.edu/users/dsb/GPL.html) for others to access.

2 A Standard Problem: The Graph Product Line

The Graph Product-Line (GPL) is a family of classical graph applications that was
inspired by early work on software extensibility [16, 19]. GPL is typical of product-
lines in that applications are distinguished by the set of features that they implement,

where no two applications have the same set of features.! Further, applications are
modeled as sentences of a grammar. Figure 1a” shows this grammar, where tokens are
names of features. Figure 1b shows a GUI that implements this grammar and allows
GPL products to be specified declaratively as a series of radio-button and check-box
selections.

1. A feature is a functionality or implementation characteristic that is important to clients [15].
2. For simplicity, the grammar does not preclude the repetition of algorithms, whereas the GUI
does.

12

(@)

(b)

Roberto E. Lopez-Herrejon and Don Batory

GPL := Gtp Wgt Src Alg';

Gtp := Directed | Undirected;
Wgt := Weighted | Unweighted;
Src := DFS | BFS | None;
Alg := Number | Connected | StronglyConnected
| cycle | MST Prim | MST Kruskal | Shortest;
Graph Type Weight Search Algorithms
@ Directed @ Weighted @ DFS [v] Number

r Undirected ' Unweighted ' BFS [Connected Comp.
) Mone [¢l Stronghy Con. Comp.
[+] Cycle Checking
[MST Prim
[MST Kruskal
[¥] Single Shortest Path

Figure 1. GPL Grammar and Specification GUI

The semantics of GPL features, and the domain itself, are uncomplicated. A graph is
either Directed or Undirected. Edges can be Weighted with non-negative num-
bers or Unweighted. Every graph application requires at most one search algorithm:
breadth-first search (BFS) or depth-first search (DFS); and one or more of the following
algorithms [10]:

Vertex Numbering (Number): Assigns a unique number to each vertex as a
result of a graph traversal.

Connected Components (Connected): Computes the connected components
of an undirected graph, which are equivalence classes under the reachable-from
relation. For every pair of vertices x and y in an equivalence class, there is a path
from x to y.

Strongly Connected Components (StronglyConnected): Computes the
strongly connected components of a directed graph, which are equivalence classes
under the reachable-from relation. A vertex y is reachable form vertex x if there is
a path from x to y.

Cycle Checking (Cycle): Determines if there are cycles in a graph. A cycle in
directed graphs must have at least 2 edges, while in undirected graphs it must have
at least 3 edges.

A Standard Problem for Evaluating Product-Line Methodologies 13

® Minimum Spanning Tree (MST Prim,MST Kruskal): Computes a Minimum
Spanning Tree (MST), which contains all the vertices in the graph such that the
sum of the weights of the edges in the tree is minimal. We include both algorithms
because they present distinct and interesting performance and design issues.

® Single-Source Shortest Path (Shortest): Computes the shortest path from a
source vertex to all other vertices.

A fundamental characteristic of product-lines is that not all features are compatible.
That is, the selection of one feature may disable (or enable) the selection of others.
GPL is no exception. The set of constraints that govern the GPL features are summa-
rized in Table 1.

Required Required Required
Algorithm Graph Type | Weight Search
Vertex Numbering Directed, Weighted, BFS, DFS

Undirected Unweighted

Connected Components Undirected Weighted, BFS, DFS
Unweighted

Strongly Connected Components Directed Weighted, DFS
Unweighted

Cycle Checking Directed, Weighted, DFS

Undirected Unweighted
Minimum Spanning Tree Undirected Weighted None
Single-Source Shortest Path Directed Weighted None

Table 1. Feature Constraints

A GPL application implements a valid combination of features. As examples, one GPL
application implements vertex numbering and connected components using depth-first
search on an undirected graph. Another implements minimum spanning trees on
weighted, undirected graphs. Thus, from a client’s viewpoint, to specify a particular
graph application with the desired set of features is straightforward. And so too is the
implementation of the GUI (Figure 1b) and constraints of Table 1.

We chose Java as our implementation language. Besides its simplicity over C++ and
availability of GUI libraries, we made use of Java containers, iterators, and sort meth-
ods, to avoid reimplementing these low-level routines by hand. We recommend others
to follow our lead to make comparisons easier.

14 Roberto E. Lopez-Herrejon and Don Batory

3 GenVoca

GenVoca is a model of product-lines that is based on step-wise extension [3-6]°.
Among its key ideas is programs are values. Consider the following constants that rep-
resent programs with individual features:

f // program that implements feature £
g // program that implements feature g

An extension is a function that takes a program as input and produces an extended (or
feature-augmented) program as output:

1(x) // adds feature i to program x
j (x) // adds feature j to program x

It follows that a multi-featured application is an equation, and that different equations
define a set of related applications, i.e., a product-line, such as:

a; = i(f) // application a; has features i and f
a, = j(g9) // application a, has features j and g
azy = i(j(f)) // application a3 has features i, j, and f

Thus one can determine features of an application by inspecting its equation.

3.1 GPL

A GenVoca model of GPL is the set of constants and functions defined in Table 2.
There are three extensions that are not visible to the GUI: Transpose, Benchmark,
and Prog. Transpose performs graph transposition and is used (only) by the
StronglyConnected algorithm. It made sense to separate the StronglyConnected
algorithm from Transpose, as they dealt with separate concerns. (This means that an
implementation constraint in using the StronglyConnected extension is that the
Transpose extension must also be included, and vice versa). Benchmark contains
functions to read a graph from a file and elementary timing functions for profiling.
Prog creates the objects required to represent a graph, and calls the algorithms of the
family member on this graph.

Extensions can not be composed in arbitrary orders. The legal compositions of exten-
sions in Table 2 are defined by simple constraints called design rules [3] whose details
we omit from this paper, but do include with our source code. Our GUI specification
tool translates a sentence in the grammar of Figure 1 (in addition to checking for ille-
gal combinations of features) into an equation. Because features are in 1-to-1 corre-

3. A refinement adds implementation detail, but does not add methods to a class or change the
semantics of existing methods. In contrast, extensions not only add implementation detail
but also can add methods to a class and change the semantics of existing methods. Inherit-
ance is a common way to extend classes statically in OO programming languages.

A Standard Problem for Evaluating Product-Line Methodologies 15

spondence with extensions, this translation is straightforward. For example, a GPL
application app that implements vertex numbering and connected components using
depth-first search on an undirected graph is the equation:

app = Prog(Benchmark(Number (Connected(DFS(Undirected)))))

Directed directed graph Cycle (x) cycle checking
Undirected undirected MSTPrim (x) MST Prim
graph algorithm
Weighted (x) weighted graph | MSTKruskal (x) MST Kruskal
algorithm
DFS (x) depth-first Shortest (x) single source
search shortest path
BFS (x) breadth-first Transpose (x) graph
search transposition
Number (x) vertex Benchmark (x) benchmark
numbering program
Connected (x) connected Prog (x) main program
components
StronglyConnected (x) strongly
connected
components

Table 2. A GenVoca Model of GPL

3.2 Mixin-Layers

There are many ways in which to implement extensions. We use mixin-layers [18]. To
illustrate, recall the Directed program implements a directed graph. This program is
defined by multiple classes, say Graph, Vertex, and Edge. (The exact set of classes is
an interesting design problem which we discuss in Section 4). A mixin-layer that rep-
resents the Directed program is the class Directed with inner classes Graph, Ver-
tex, and Edge:

class Directed (
class Graph {...}
class Vertex {...}
class Edge {...}

}

An extension is implemented as a mixin, i.e., a class whose superclass is specified by a
parameter. The depth-first search extension is implemented as a mixin DFS that encap-
sulates extensions (mixins) of the Graph and Vertex classes. That is, DFS grafts new
methods and variables onto the Graph and Vertex classes to implement depth first
search algorithms:

16 Roberto E. Lopez-Herrejon and Don Batory

class DFS<x> extends x {
class Graph extends x.Graph {...}
class Vertex extends x.Vertex {...}

}

The above describes the general way in which GenVoca-GPL model constants and
functions are implemented. When we write the composition A = DFS (Directed) in
our model, we translate this to the equivalent template expression:

class A extends DFS<Directeds>;

In general, there is a simple mapping of model equations to template/mixin expres-
sions. Of course, Java does not support mixins or mixin-layers, but extended Java lan-
guages do. We used the Jakarta Tool Suite (JTS) to implement mixin-layers [4].

4 Graph Implementation

Designing programs that implement graph algorithms is an interesting problem. Every
implementation will define a representation of graphs, vertices, edges, and adjacency
— i.e., what vertices are adjacent (via an edge) to a given vertex. Further, there must
be some way to represent annotations of edges (e.g., weights, names). We did not
arrive at our final design immediately; we went through a series of designs that incre-
mentally improved the clarity of our code, which we document in the following sec-
tions. In the process, we learned a simple rule to follow in order to simplify extension-
based designs.

4.1 Adjacency Lists Representation (G)

The first representation we tried was based on a “legacy” C++ design [18, 5] that had
been written years earlier and that implemented few of the extensions listed in Table 2.
It consisted of 2 classes:

® Graph: consists of a list of Vertex objects.

® Vertex: contains a list of its adjacent Vertex objects.

That is, edges were implicit: their existence could be inferred from an adjacency list.
Figure 2 illustrates this representation for a weighted graph. The advantage of this rep-
resentation was its simplicity. It worked reasonably well for most extensions that we
had to implement. However, it failed on edge annotations (e.g., weights). Because
edges were implicitly encoded in the design, we had to maintain a weights list that was
“parallel” to the adjacency list. While this did indeed work, our layered designs were
obviously not clean or elegant — e.g., for operations like graph transposition which
needed to read edge weights, and Kruskal’s algorithm which needed to manipulate
edges directly. Because of these reasons, this lead us to our second design.

A Standard Problem for Evaluating Product-Line Methodologies 17

Graph Object

I 1
Verti List
ertices Lis :%@ :

Adjacent 1~ - - ~-=- 1

Vertices I@ 1

Weights List | | é_ _@_ 1

Graph Example @ =0 \m====== 1

Figure 2. Adjacency Lists Representation Example

4.2 Neighbor List Representation (GN)

The second representation consisted of three classes:
® Graph: contains a list of Vertex objects.
® Vertex: contains a list of Neighbor objects.

® Neighbor: contains a reference to a Vertex object, the other end of an edge.

Edge annotations were encoded as a extensions — i.e., extra fields — of the Neigh-
bor class. Figure 3 illustrates this representation. By pushing the neighbor vertex
object and edge annotations into a Neighbor object, we reduced the number of list
accesses required to obtain these annotations. While this did lead to a simplification of
the coding of some mixin-layers, it did not simplify the complexity of the Kruskal
algorithm. Since this mixin-layer was unnecessarily difficult to write (and read!), we
knew there was still something wrong. This lead to our final design.

4.3 Edge-Neighbor Representation (GEN)

Textbook descriptions of algorithms are almost always simple. The reason is that cer-
tain implementation details have been abstracted away — but this is, in fact, the
strength of layers and extensions. We wanted to demonstrate that we could (almost lit-
erally) copy algorithms directly out of text books into mixin-layer code. The benefits
of doing so are (a) faster and more reliable implementations and (b) easier transference
of proofs of algorithm correctness into proofs of program correctness. We realized that
the only way this was possible was to recognize that there are a standard set of “con-
ceptual” objects that are referenced by all graph algorithms: Graphs, Vertices, Edges,
and Neighbors (i.e., adjacencies). Algorithms in graph textbooks define the fundamen-
tal extensions of graphs, and these extensions modify Graph objects, Vertex objects,
Edge objects, and Neighbor objects. Thus, the simplest way to express such extensions
is to reify all of these “conceptual” objects as physical objects and give them their own
distinct classes.

18 Roberto E. Lopez-Herrejon and Don Batory

Graph Object

7 1 Vertex V1

List of Neighbors
Q gi ﬁ; Vertex
Object
Graph Example
P P Neighbor Object 9 @ gttjee?:etr

Figure 3. Neighbor Lists Representation Example

The problems of our previous designs surfaced because we tried to make “short-cuts”
to avoid the explicit representation of certain conceptual objects (e.g., Edge, Neigh-
bor). Our justification for doing so was because we felt the resulting programs would
be more efficient. That is, we were performing “optimizations” in our earlier designs
that folded multiple conceptual objects into a single physical object. In fact, such pre-
mature optimizations caused us nothing but headaches as we tried to augment our
design to handle new extensions and to produce easy to read and maintain code. (We
think that this may be a common mistake in most software designs, not just ours). So
our “final” design made explicit all classes of objects that could be explicitly extended
by graph algorithms. Namely, we had four classes:

® Graph: contains a list of Vertex objects, and a list of Edge objects.
® Vertex: contains a list of Neighbor objects.

® Neighbor: contains a reference to a neighbor Vertex object (the vertex in the
other end of the edge), and a reference to the corresponding Edge object.

® Edge: extends the Neighbor class and contains the start Vertex of an Edge.

Edge annotations are now expressed as extensions of Edge class, and were expressed
by the addition of extra fields in the Edge class. This representation is illustrated in
Figure 4.

Equating conceptual objects with physical objects may simplify source code, but the
question remains: were our original designs more efficient? Is “premature design opti-
mization” essential for performance? These questions are addressed next.

5 Profiling Results

We performed a series of benchmarks to quantify the trade-offs between our three
designs. Several implementations of the designs were tried, using different containers,
and different strategies to access and copy the edge annotations. This section shows the
results for our most fine-tuned implementations. The benchmarks were run on a Win-
dows 2000 platform using a 700Mhz processor with 196MB RAM.

A Standard Problem for Evaluating Product-Line Methodologies 19

Graph Object

|- Verfices List, _ _ |== EdgesList _ _
@R e) OOE)
List of Neighbors

Vertex V1 @ @
Graph Example Neighbor .

Object

Edge E1 Edge E2 Edge E3
@®) ®®:) ®®)

Figure 4. Edge and Neighbor List Representation Example

The first program used the vertex number algorithm on undirected graphs using depth
first search. This program measured the performance of graph creation and traversal. A
randomly generated graph with 1000 vertices was used as test case. Figure 5 shows the
benchmark results.

Figure 5a indicates that design G (our first) performs better than the other two; 6%-
22% better that GN (our second), and 75%-120% better than GEN (our third). This is
not surprising: GN and GEN have object creation overhead that is absent in G —
Neighbor objects are created in GN, and Neighbor and Edge objects are created in
GEN. While this is an obvious difference, the overall speed of the benchmark was dic-
tated by the time reading the graph from disk. Figure 5b shows this total execution
time, where the difference between the G application and the GN application is about
5% and G with GEN is about 9%.

Nurrber Vertices Bxecution Total Execution Time

Seconds

KK 18K DK BK 0K 5K 100K 150K 200K 250K 30K
Wdﬁm Nurrber of Edges

(a) (b)

Figure 5. Simple graph traversal comparison

The second program benchmarked the impact of copying a graph with edge annota-
tions. StronglyConnected utilizes such an operation, transpose, that creates a new
copy of a graph but with the direction of the edges reversed. A randomly generated

20 Roberto E. Lopez-Herrejon and Don Batory

graph with 500 vertices was used as test case. In general, there was no significant dif-
ference (see Figure 6a). The G design performed 2% better than GN and 6% better
than GEN. Although cost of graph creation is different among designs (as indicated by
Figure 5a), the differences are swamped by the large computation times of the
StronglyConnected algorithm. In particular, only 15% of the total execution time in
Figure 6b was spent in reading the graph in from disk.

Total Execution Time
Strongly Connected Conponents Execution
400 400
(2]
o 300 T30
2 o
S 200 o 200
e ®
@ 100 100
0 0
2K 5K 7K 100K 125K 2K 5K 7K 100K 125K
Nurrber of Edges Nurrber of Edges
(a) (b)

Figure 6. Strongly Connected Components

The third program benchmarked the impact of algorithms that use edges explicitly, like
Kruskal’s algorithm. A randomly generated graph with 500 vertices was used as a test
case. As expected, the GEN representation outperformed the other two simply because
it does not have to compute and create the edges from the adjacency or neighbor lists.
It performed between 43% and 98% faster than representation G, and between 59%
and 120% faster than representation GN (see Figure 7a). The difference between G
and GN is due to the fact that in the latter, to get the weights for each edge, an extra
access to the weights lists is required; and that the creation of the output graph is more
expensive because it has to create Neighbor objects as well. Of the total execution
time (Figure 7b), approximately 60% was spent reading a graph of 25K edges from
disk, and less than 5% when the graph had 125K edges.

Total Execution Time

4000

» 3000 1
2
8 2000 1
1%

Q
@ 1000 —

25K 50K 75K 100K 125K
Number of Edges

(a) , (b)
Figure 7. MST Kruskal

Overall, we found that the performance of algorithms that did not use weighted edges
(e.g., numbering, cycle-checking, connected components, strongly-connected compo-

A Standard Problem for Evaluating Product-Line Methodologies 21

nents) had slightly better performance with the G design. For those algorithms that
used weighted edges (e.g., MST Prim, MST Kruskal, shortest path), the GEN design
was better. Because an application is specified by the same equation for all three mod-
els, we could exploit our performance observations in a “smarter” generator that would
decide which design/implementation would be best for a particular family member —
i.e., one equation might be realized by a G design, another by a GEN design (see [6]).

Focussing exclusively on performance may be appropriate for most applications. But a
more balanced viewpoint needs to consider program complexity (which indirectly
measures the ease of maintenance, understandability, and extensibility). The main
issue for us was the impact that the representation of edges had on program complex-
ity. By in large, all layers had visually simple representations. But the Kruskal layer
seemed more complicated than it needed to be. The reason was that in both the G and
GN designs, the Kruskal layer had an explicit Edge class that was private to that layer,

and used by no other layer4. (The Kruskal algorithm demanded the existence of
explicit edge objects). The fact that all layers might benefit from making Edge explicit
drove us to the GEN design, which we considered visually and conceptually more ele-
gant than our earlier designs. As it turns out, our instincts on “visual simplicity” were
not altogether accurate. To see why, we use two metrics for program complexity: lines

of code (LOC) and number of symbols (NSYMB).5 Table 3 shows these statistics for
the Kruskal layer. Making edges explicit did indeed simplify this layer’s encoding.
However, other parts of our design grew a bit larger (mostly because we had to make
the Neighbor and Edge classes and their extensions explicit). Table 4 shows these
same statistics, across all layers, for all three designs. Overall, the statistical complex-
ity of all three designs was virtually identical. So the drive for “visual simplicity”
among layers in the end did improve our designs, but surprisingly did not impact their
size statistics.

There is a benefit to the GEN design that is not indicated by the above tables. If we
chose to enlarge the G and GN product-line with more algorithms that directly manip-
ulate edges, then it is likely a local copy of the Edge class would be introduced into
these layers. And doing so would result in replicated code, possibly leading to prob-
lems with program maintenance. By making the Edge class global to all extensions as
in the GEN design, we would expect little or no code replication — precisely what we
want in a product-line design.

Finally, we wanted to see if explicit layering (which mixin-layers produce) affects the
overall performance. We created equations for each design that contained the most lay-
ers (10), and manually-inlined the resulting chain of mixin-layers into an unlayered
package called Flat. There are two equations that have 10 layers, namely:

4. The local version of Edge in the Kruskal layer is indicated in Table 4 as 7 lines of 52 tokens.
5. We used other metrics [8], but found they provided no further insights.

22 Roberto E. Lopez-Herrejon and Don Batory

LOC NSYMB
G GN GEN G GN GEN
Kruskal 87 90 69 927 928 695
Table 3. Kruskal Algorithm Statistics
Class LOC NSYMB
Name G GN GEN G GN GEN
Graph 372 387 380 3554 3600 3492
Vertex 209 202 198 1832 1758 1631
Neighbor 0 30 16 0 229 49
Edge 7 7 26 52 52 304
Total 588 626 620 5438 5639 5476

Table 4. Lines of Code (LOC) and Number of Symbols (NSYMB)

® Directed, Weighted, DFS, StronglyConnected, Number, Transpose, Shortest,
Cycle, Benchmark, Prog: in this case the difference between the layered version
and the flattened one oscillates between 0% and 2% in G, -1% and 1% for GN,
and -1% and 1% for GEN. A randomly generated graph with 500 vertices was
used as test case. These results are shown in Figure 8a.

® Undirected, Weighted, DFS, Connected, Number, Cycle, MST-Kruskal, MST-Prim,
Benchmark, Prog: for this application the difference between the layered version
and the flattened one varies between 0% and 3% in G, 0% and 5% in GN, and
between -1% and 1% in GEN. A randomly generated graph with 300 was used as
test case. The results are shown in Figure 8b.

Prim, Kruskal, CC, Number, Cycle
Execution Time

Strongly CC, Shortest, Nurrber, Cycle
Execution Time oG

B GHat

oG
B GFlat

OGN
0 G\Aat
EGEN
0 GE\Flat

OGN
OGN
BGEN
0 GENFlat

Seconds
- 8888
=/

= |
=
-

15K 25K 3K
Number of Edges

2K 50K 75K 100K 125K 45K

Number of Edges

(@) Figure 8. Effect of Class Layering

A Standard Problem for Evaluating Product-Line Methodologies 23

The small difference between the layered version and its corresponding flattened one
is due to the fact that few methods override their parent method. When overriding does
occur, it involves fewer than 3 layers. Again, this result is specific to GPL and may not
hold for other domains.

6 Conclusions

GPL is a simple and illustrative problem for product-line designs. Different applica-
tions of the GPL product-line are defined by unique sets of features, and not all combi-
nations of features are permitted. The state of the art in product-lines is immature, and
the need to understand the commonalities and differences among product-line design
methodologies is important. We want to know how methodologies differ, what are
their relative strengths and weaknesses, and most importantly what are the scientific
principles that underlie these models. We do not know answers to these questions. But
it is our belief that by proposing and then solving a standard set of problems, the
answers to these questions will, in time, be revealed.

We believe GPL is a good candidate for a standard problem. It has the advantages of
simplicity — it is an exercise in design and implementation that can be discussed in a
relatively compact paper — and understandability — domain expertise is easily
acquired because it is a fundamental topic in Computer Science. Further, it provides an
interesting set of challenges that should clearly expose the key concepts of product-
line methodologies.

In this paper, we presented a product-line model and implementation of GPL using the
GenVoca methodology and the Jakarta Tool Suite (JTS). We showed how GenVoca
layers correspond to features, and how compositions of features are expressed by
equations implemented as inheritance lattices. We presented a sequence of designs that
progressively simplified layer implementations. We benchmarked these implementa-
tions to understand performance trade-offs. As expected, different designs do have dif-
ferent execution efficiencies, but it is clear that a “smart” generator (which had all
three designs available) could decide which representation would be best for a particu-
lar application. As an additional result, we showed that there is a very small impact of
class layering in overall application performance.

We hope that others apply their methodology to GPL and publish their designs and
findings. We believe that our work would benefit by a close inspection of others, and
the same would hold for other methodologies as well. Our code can be downloaded
from http://www.cs.utexas.edu/users/dsb/GPL.html.

Acknowledgements. We would like to thank Vijaya Ramachandran for her valuable
help with the subtle details of the theory of graph algorithms. We also thank Jay Misra
for clarifying the distinction between refinements and extensions.

24

Roberto E. Lopez-Herrejon and Don Batory

7 References

(1]

(2]

(3]

(4]

(5]

(71

(8]

(9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

J-R Abrial, E. Boerger, and H. Langmaack, Formal Methods for Industrial Applications:
Specifying and Programming the Steam Boiler Control, Lecture Notes in Computer
Science, Vol. 1165, Springer-Verlag, 1996.

P. America, et. al. “CoPAM: A Component-Oriented Platform Architecting Method
Family for Product Family Engineering”, Software Product Lines: Experience and
Research Directions, Kluwer Academic Publishers, 2000.

D. Batory and B. Geraci. Composition Validation and Subjectivity in GenVoca
Generators. IEEE Transactions on Software Engineering, February 1997.

D.Batory, B.Lofaso, and Y.Smaragdakis. “JTS: Tools for implementing Domain-Specific
Languages”, Int. Conf. on Software Reuse, Victoria, Canada, June 1998.

D. Batory, R. Cardone, and Y.Smaragdakis. “Object-Oriented Frameworks and Product
Lines”, Ist Software Product-Line Conference, Denver, Colorado, August 2000.

D. Batory, G. Chen, E. Robertson, and T. Wang, “Design Wizards and Visual
Programming Environments for GenVoca Generators”, IEEE Transactions on Software
Engineering, May 2000, 441-452.

J. Bosch, “Evolution and Composition of Reusable Assets in Product-Line Architectures:
A Case Study”, Software Architecture, Kluwer Academic Publishers, 1999.

S.R. Chidamber and C.F. Kemerer, “Towards a Metrics Suite for Object Oriented
Design”, OOPSLA 1991.

S. Cohen and L. Northrop, “Object-Oriented Technology and Domain Analysis”, Int.
Conf. on Software Reuse, Victoria, Canada, June 1998.

T.H. Cormen, C.E. Leiserson, and R.L.Rivest. Introduction to Algorithms, MIT Press,
1990.

K. Czarnecki and U.W. Eisenecker, “Components and Generative Programming”,
SIGSOFT 1999, LNCS 1687, Springer-Verlag, 1999.

K. Czarnecki and U.W. Eisenecker, Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

J-M. DeBaud and K. Schmid, “A Systematic Approach to Derive the Scope of Software
Product Lines”, Int. Conference on Software Engineering 1999.

H. Gomaa et al., “A Prototype Domain Modeling Environment for Reusable Software
Architectures”, Int. Conf. on Software Reuse, Rio de Janeiro, November 1994, 74-83.

M. Griss, “Implementing Product-Line Features by Composing Component Aspects”,
First International Software Product-Line Conference, Denver, Colorado., August 2000.

I. Holland. “Specifying Reusable Components Using Contracts”, ECOOP 1992.

D.L. Parnas, “On the Design and Development of Program Families”, IEEE Transactions
on Software Engineering, March 1976.

Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mixin Layers”,
ECOOP 1998.

M. VanHilst and D. Notkin, “Using C++ Templates to Implement Role-Based Designs”,
JSSST International Symposium on Object Technologies for Advanced Software,
Springer-Verlag, 1996, 22-37.

D.M. Weiss and C.T.R. Lai, Software Product-Line Engineering, Addison-Wesley, 1999.

Components, Interfaces and Information Models
within a Platform Architecturefl

Jan Gerben Wijnstra

Philips Research Laboratories
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
JanGerben.Wijnstra@philips.con

Abstract. In this paper we describe our experiences with the development of a
platform in the medical imaging domain. Three important ingredients of this
platform are components, interfaces and information models. We will explain
the requirements for the platform, why these three ingredients have been
chosen, and our experiences when using this approach.

Keywords: component, interface, information model, diversity, platform,
product family, product population

1. Introduction

Products in the medical imaging market are becoming more complex and more
diverse, must support easy extension with new features (feature propagation across
products), should have similar appearance to its users, and have to be of high quality.
A short time-to-market and limited development costs are also important factors.
These requirements should be met by a product family that covers a large part of the
market. The development of a product family and its individual members (i.e. single
products) can be supported by a shared family architecture.

Similarities can even exist between various product families. These similarities can
be exploited in a similar way as they would be within a single product family. Such a
group of related product families is sometimes referred to as a product population
A shared architecture can also be defined for such a product population. Based on this
architecture, we can define and provide assets that can be reused across the product
families belonging to the product population.

In this paper we describe our approach for components, interfaces and information
models within a platform for a product population. This approach is applied to a
project, which aims at the delivery of common components across a number of
different product families. These product families share the characteristic of acquiring
and processing digital images of the inside of a human body. The platform can also be
directly used for products; the 'indirection' via a product family is not required.
Section [2| introduces the requirements and set-up of the platform. In section El we
elaborate on the ingredients of the platform, i.e. components, interfaces and
information models. Section E] describes the approach of using these ingredients to
build a platform. Finally, section E] presents result of practical experiences with the
approach, followed by concluding remarks in section@.

! This work has been partially funded by the European ITEA project ESAPS.

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 25-35, 2001.
© Springer-Verlag Berlin Heidelberg 2001

mailto:JanGerben.Wijnstra@philips.com

26 Jan Gerben Wijnstra

2. Product Population Platform

In the previous section, we introduced the arguments for a platform approach to

support the development of products in the medical imaging domain. The platform

has to support a number of properties. The most important ones are:

e open systems
The platform is intended for various systems within the hospital. These systems
must be interconnectable and must be able to incorporate new functionality.

e forward/backward compatible
It is desirable that older and newer products made with the platform can work
together. Also within a product, it must be possible to combine functions of
different versions.

e independent life-cycles
The platform contains different groups of coherent functionality. Each of these
groups should have an independent life-cycle, so that it can be updated without
affecting the rest of the platform.

e configurability, extendibility
The composability/configurability of individual specific products from specific
parts of the platform is very important. It should also be easy to extend products
with new functionality.

e complexity management
When defining a platform that must be applicable for several product families
and will evolve over time, it is important that the complexity is manageable.

e outsourcing and third-party software
In the light of the growing size and complexity of the software, we want to be
able to buy-in certain parts or to outsource well-defined functionality.

e portability (technology independence)
The platform is used for different products that may have different operating
systems or component technology. The platform must be usable in these contexts.

To support these properties, the product population platform will consist of a
number of components. These components have clearly defined interfaces.
Information models are defined for some of these interfaces, describing the semantics
of the data that is exchanged over these interfaces (components, interfaces and
information models are explained in section E]) Specific products can reuse the
components, taking the interfaces and information models into account.

The term ‘platform’ has different meanings, depending on the context in which it is
used. For example, when looking at operating systems or middleware such as COM,
the platform is a piece of infrastructure functionality on top of which you can build
your own product. Another way in which the term platform is used is for a collection
of frameworks to which specific functionality can be added via plug-ins (see . In
the context of this paper, we define a platform to be a set of generally reusable
components. The users of this platform are free to decide which components to use.
This is illustrated in Here, two product families and one product are depicted
based on the platform. Each of them is composed from product-specific components
and components that are selected from the platform.

Components, Interfaces and Information Models within a Platform Architecture 27

gkk HT\ I_Elff
| / /

Platform

O

Fig. 1. Platform Set-up

3. Components, Interfaces and Information Models

The three main construction elements for the platform are components, interfaces and
information models. They will be discussed in this section.

In our platform, components are units containing re-usable functionality with

explicit interfaces that offer:

a quick delivery of existing functionality through stable interfaces,

composability of products from components by product groups,

independent life-cycles of components and products, allowing incremental
updates,

easy distribution/installation of updated/new functionality,

an opportunity to (re-)use third-party and legacy software,

improved control over outsourcing,

integration of heterogeneous technologies (operating system, programming
language).

In addition to the components, interfaces are essential for our approach. Important

characteristics of these interfaces are:

access points to clearly defined functionality for use by other components,
contracts between component creators and component users,

components must implement interfaces in their entirety (no optional methods),
components usually implement a set of logically-related interfaces,

the same interface may be implemented by multiple components,

the interfaces should be stable, the implementation can be flexible.

Interfaces are closely related to components. This relation is illustrated in A

component has two types of interfaces, namely:

provided interface; the component guarantees that it will implement the
functionality associated with the interface

required interface; the component accesses functionality through this interface
and relies on the functionality to be implemented outside the component

28 Jan Gerben Wijnstra

component

required interface

provided interface

component

Fig. 2. Components, Interfaces and Information Models

The interfaces and components are smaller parts that are defined in the context of
the overall platform architecture. In addition to these interfaces and components, there
are concepts that are relevant at several places in the architecture. An example of such
a concept in the medical domain is a medical image. The concept of an image is
relevant when displaying an image on the screen, when printing an image on film, or
when storing an image on a CD. The image concept is a complex structure, and
includes for example the pixel matrix and attributes that refer to the acquisition of the
image. Concepts like this are included in a so-called ‘information model’. An
information model captures relevant concepts from the domain, and is independent of
the underlying technology. A number of information models have been defined. It is
possible for one information model to build upon another (extending it).

As an example, shows part of the imaging information model, which is
based on the DICOM (Digital Imaging and Communications in Medicine) standard.
Each of the objects in the structure has a number of attributes. There may be attributes
that are specific for specific product families. It can also be the case that specific
objects are added for individual product families.

Patient Study Examination Series Image
1 0.* 1 0.% 1 0.* 1 0.*
is subject of conprises of has resuttedin 1 consists of 1.
contains is applicable to
0.* 0.x
Presentation
State

Fig. 3. Information Model Example

The concepts in an information model play a role at several places in the
architecture, between various components. For example, an application component
makes a request to a print service to print an image. One way of realising this
functionality is to let the print service provide a number of methods, each with a
number of parameters, so that the application component can pass all the individual
attributes that belong to the image and the attributes that control the printing of the
image. However, instead of this possibility, the request is passed via one method call
as a structure of data objects as defined in the information model. As a consequence,

Components, Interfaces and Information Models within a Platform Architecture 29

there are fewer and simpler interface methods, and the semantics are moved to the
information model.

Fig. 2| illustrates how an information model is related to an interface. An
information model defines the structure and semantics of the data objects that are
exchanged between components via a certain type of interface. Such an interface
enables data objects that adhere to the related information model to be passed. Two
interacting components both must know the information model in order to deal with
the data that is exchanged.

Changes can occur within an information model, as the concepts within the domain
may evolve. This means that several versions of an information model can exist. A
certain component therefore provides a combination of an interface together with a
particular version of the related information model. Since these two elements together
actually determine the functionality that is provided by the component, they form the
complete interface provided by the component.

Each of the product families supports the basic set of concepts that are defined for
a particular information model. However, there may also be extensions that are
specific for a product family. This means that when data is transferred from one
system to another, the receiving system will at least understand the basic set. The
receiving system may or may not ignore additional elements or not, depending on the
information models used by the sending and receiving systems.

The main benefits of using information models within the definitions of component
interfaces are as follows:

e reuse within several interfaces

An information model captures concepts that play a system-wide role in the
interaction between components. For example, an image can be printed, stored,
or displayed, requiring interaction with different components. These concepts can
easily be reused in different contexts by defining them as data objects that can be
passed via interfaces. Interfaces might also be reusable for several information
models. This is likely when one information model is an extension of another
information model.

e stable methods in interfaces
Since the syntactic part (the methods and their attributes) of the interfaces
become smaller, they will remain more stable than traditional interfaces. This
means that fewer new interfaces will be introduced during evolution of the
system than when applying the 'COM-rule', that is, when an interface needs to be
modified, a new interface has to be introduced.

e handling concepts as separate entities
As in object-orientation, we intuitively deal with concepts in the real world as
objects in an information model. These objects can be exchanged as entities over
interfaces, and can be passed from component to component. This is different to
the situation where an object’s attributes have to be put in the parameters of a
method call, one by one. This would lead to complex method descriptions,
particularly when concerning object structures consisting of several hierarchical
levels. It is even possible that when a data object is passed through a number of
components, the intermediate components do not know the complete semantics
of the data object, but simply pass the data object to the next component. This

30

Jan Gerben Wijnstra

allows the introduction of generic services that can handle data objects with
slightly different structures and semantics, e.g. a service that queues and handles
print requests.

data objects can be stored (persistent)

Since the data that is passed between components is in the form of data objects, it
can easily be stored. For example, the request to print an image with all its data
can be handled by a print service, and can later on be passed to a printer that is
free. The same object structure can also be used to store these objects. Also for
the exchange of information between interconnected system, the data objects are
used.

support for forward and backward compatibility

Since the methods of the interfaces remain stable, each component can receive
data objects belonging to an older or newer version of the information model. If
the version of the information model used by the requesting component is older,
the receiving component knows how to deal with the data. If the version is newer,
some new attributes in the data may have to be skipped, as the receiving
component will not understand what they mean. This mechanism should of
course be used with care, since although the methods of the provided and
required interfaces are compatible, the combination of different versions of an
information model may lead to undesired behaviour.

enabling declarative way-of-working

The components in a product population platform have to be used together with
components from specific products. This means that a stable level of interaction
must be chosen for these component interfaces. By applying data objects, a
declarative way-of-working is enabled in which the functionality is requested in
terms of end-results (more what) and not in a sequence of steps (less how). So,
the request to perform some action is captured in a data structure and is passed to
the performer of that action. This kind of interaction is more stable than
interaction based on interfaces that have methods for each individual step.

data driven tools

The use of information models increases the value of tooling that is based on data
structures. As mentioned earlier, the data objects can easily be stored in a
database. Another example is the generation of test data, based on an information
model that defines the allowed structures and values for the data objects.

This information models approach follows the trend of separating syntax and

semantics, which can also be seen in XML. The information models are not applied
for all interfaces. Usually those interfaces that deal with relevant system-wide
concepts have related information models. There are specific interfaces for local
interaction between components, since the advantages mentioned above mostly apply
to the interfaces related to relevant system-wide concepts.

In addition to the advantages of the information model approach, there are also

some drawbacks. One of these drawbacks is that it becomes more difficult to see what
an interface is used for, since the methods of the interface are more generic. It also
requires a different way of working than in the situation in which ‘normal’ interfaces
are used.

Components, Interfaces and Information Models within a Platform Architecture 31

4. Approach

In this section, we give a general description of our platform approach (section 4.1),
the main architectural styles (section 4.2), the way diversity is supported by the
platform (section 4.3), and look in more detail at how the components, interfaces and
information models are defined (section 4.4).

4.1 Platform Definition

As mentioned earlier, the first aim of the shared approach is to arrive at an

architecture that is shared across the various medical imaging systems. Such a shared

architecture is essential to be able to define shared components, interfaces and

information models. All parties involved, both the platform group and the product

groups, contribute to an architecture group that defines the shared platform

architecture. The next steps are as follows:

e To define shared interfaces and information models, enabling the exchange and
sharing of medical (imaging) data;

e To develop and deliver a set of medical imaging software components, that
adhere to the agreed interfaces and information models, and that can be used
within the various products.

A prerequisite for this approach is that the information models and interfaces are
explicitly defined and managed. To achieve this, there are two working groups, one
for the information models and one for the interfaces, each containing members from
the various platform and product groups. The focus is on the standardisation of
functionality that already existed in multiple systems. As a rule of thumb, a
component is part of the platform when it is required by at least two products.

The platform group defines and realises reusable components for the platform.
These components can be built quite independently of each other. They will be
released when they are finished, and will be integrated into the platform in a next step.
The product groups take a version of the platform and build their products on top of it.
Any product may use its own selection of reusable assets.

The product groups also use components that they have built for their own purpose.
If these components comply with the interfaces of the shared architecture and are
useful to other product groups, they may also be integrated into the shared platform.
Note that this integration step will often need a redesign, both of the component itself
and of those component interfaces that are not yet available. The reason for this is that
the functionality that the component provides may have to be slightly adapted to make
it reusable within other products.

4.2 Platform Architecture

The shared platform architecture defines a number of layers. The layers are (from
bottom to top): base layer (containing infrastructure functionality), service layer
(medical service components) and application layer (medical application
components). The application components provide integrated functionality that forms
an application. Applications are integrated to form products. The functionality of the
application components is realised by using the functionality of the underlying service
components. Each service component can thus be reused for several applications.

32 Jan Gerben Wijnstra

As shown in below, the information models play an important role in the
interaction between application and service components. These information models
form a stable factor, allowing exchange of services and applications. Furthermore, the
data objects that are exchanged between application and services can be made
persistent by storing them in repositories. Since each of these repositories supports the
same interfaces and information models, these repositories can be exchanged. When a
product family wants to incorporate platform services and applications, it has to
provide its own implemented functionality, e.g. a specific repository implementation,
via the defined interfaces and information models so that platform applications and
services can be reused. The use of data objects also supports the co-operation of
services and applications on distributed systems.

Application Application Application Repository
Interfaces & Repository

Information Models
Service Service Service Repository

Fig. 4. Applications and Services

4.3 Dealing with Diversity

The product population platform is used in the context of different medical imaging
products, each with its own architecture. Each of these products provides its own
functionality and requires specific functionality from the platform. These products
will each evolve over time, as will the platform. This means that the platform must
have an excellent level of support for diversity and evolvability.

The architecture of the platform contains three main concepts that support the
diversity needed across products and product families, as explained below:
e configuration data per component
e required interface concept
e information model concept

Each component within the platform has a required interface for configuration
data. During start-up configuration data is read from the configuration database and is
used to initialise each of the components. We will not elaborate further on this
mechanism.

The required interfaces form explicit points of variability in the platform
architecture. They allow the exchange of components that have the same provided
interfaces, but have been implemented differently due to specific requirements. A
simple example is the Logging interface. This is a provided interface of the Logging
component within the platform, which is responsible for storing the logging data. The
Logging interface is also a required interface for all other platform components. A
specific product family is however not obliged to use the logging implementation
provided by the platform. If there are specific logging implementation requirements,

Components, Interfaces and Information Models within a Platform Architecture 33

the product family can implement a specialised logging component that adheres to the
Logging interface. This is illustrated in All platform components perform
logging through the Logging required interface, so none of the other components need
to be changed.

Platform components should make as few assumptions as possible about their
(execution) environment. As a design rule required interfaces should be defined for
each function that may require variability in one or more products.

Platform
Component X

Platform
Component X

ILogging ILogging
Logging Logging
Implement. A Implement. B
System 1 System 2

Fig. 5. Different Implementations for One Required Interface

The third variability mechanism is the use of abstract, general interfaces in
combination with information models. In order to keep the interfaces simple and
stable, most of the semantics are passed on as structured data objects that adhere to a
specific information model, resulting in a declarative style. This allows a single
implementation of the generic component that can support requirements from
different products (see . If the differences in requirements cannot be met by one
single implementation, however, the declarative style facilitates a completely different
implementation, since the individual steps to arrive at the result are not defined in the
interface.

Component X Component Y
IMyInterface IMyInterface
Component C Component C
System 1 System 2

Fig. 6. One Implementation Supporting Different Requests

4.4 Defining Components, Interfaces and Information Models

The interfaces and their related information models play an important role in the
development of the platform. We could say that instead of a component-centric
architecture description we have an interface-centric architecture description. In a
component-centric approach, the focus lies on describing the various components and
not on how these components interact with each other. In an interface-centric

34

Jan Gerben Wijnstra

approach, the focus lies on the interaction patterns between the components, thus
putting the focus on interfaces. The following steps can be identified when defining
interfaces and components for the platform:

S.

Determine which functionality must be provided, which kinds of components
play a role in the solution, and which roles they play in collaborations. This is
based on the domain knowledge.

Based on the interactions between these kinds of components, define the
interfaces and the information models for the information exchanged. These
interfaces determine which roles components can play. The interfaces have to
enable a declarative way of working.

Using the interface specification, and taking the functional requirements into
account, define the various components. Such a component definition heavily
relies on these interface specifications, i.e. they can be seen as compositions of
interface specifications. The functionality is then realised inside these
components.

Experiences

In the previous sections, we described the approach for using components, interfaces
and information models. Some of the experiences with this approach have taught us

that:

6.

Clear separation of platform internal and external interfaces (and components) is
important;

When moving from a component-oriented approach to a more interface-oriented
approach, do not forget good definitions of components;

Prototyping of interfaces and components is an important means to validate the
design choices at an early stage;

Starting on a small scale gives the opportunity to fine-tune the process and to
gain experience for next developments;

It is important to involve all parties (platform and product groups) in the relevant
decisions about the interfaces, information models and components;

The declarative approach supported by the data objects makes it easier to build
systems from components that are developed by different teams;

The design should not become too generic; this leads to unnecessary
implementation complexity and increased integration effort;

The chosen interfaces and information models support the required diversity in
the specific components.

Concluding Remarks

In this paper we have described our approach and experiences with components,
interfaces and information models in the development of a product population
platform for medical imaging products. Interfaces, information models and
components support the required platform variability in the following ways:

By paying explicit attention to interfaces, they will be usually more stable. The
explicit handling of required interfaces means that each interface can be

Components, Interfaces and Information Models within a Platform Architecture 35

implemented by different components, each with their own behaviour. This
enables diversity.

The interfaces are expected to remain stable. The variation, both at a particular
moment in time and over time, is enabled by the information models. An
information model can have a generic part that applies to all products, in addition
to product-family-specific extensions.

By having separate components in the platform, it is possible to select the
relevant components from the platform, add your own components, and build a
product. This would not be possible if the platform was not componentised.

References

(1]
(2]
(3]
(4]

Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice,
Addison Wesley, Reading, Mass., 1998.

Rob van Ommering, Beyond Product Families: Building a Product Population?,
Proceedings of the IW-SAPF-3, Las Palmas de Gran Canaria, March 2000.
Clemens Szyperski, Component Software — Beyond Object-Oriented
Programming, Addison Wesley, Reading, Mass., 1997.

Jan Gerben Wijnstra, Supporting Diversity with Component Frameworks as
Architectural Elements, Proceedings of the ICSE 2000, Limerick, June 2000.

XVCL Approach to Separating Concerns in Product
Family Assets

Hongyu Zhang, Stan Jarzabek and Soe Myat Swe

Department of Computer Science, School of Computing,
National University of Singapore
Lower Kent Ridge Road, Singapore 117543
{zhanghy, stan, soemyats}@comp.nus.edu.sg

Abstract. In this paper, we describe an XML-based language, called XVCL, for
managing variants in component-based product families. Using XVCL, we can
organize product family assets and instrument them to accommodate variants. A
tool that interprets XVCL and provides semi-automatic support for asset
customization is also introduced. In our projects, we applied XVCL to manage
variants in UML domain models and in generic architectures for product
families. We have achieved simple forms of separation of concerns (in both
models and architectures) and we are investigating advanced forms in current
work. We plan to compare XVCL to other emerging techniques that lead to
separating of concerns in software models, documents, architectures and code.

1 Introduction

Advanced separation of concerns is now emerging as a new area in software
engineering field. Advanced separation of concerns suggests that concerns in different
dimensions are useful for different reasons for different stakeholder, thus it is
necessary for developers to be able to identify, encapsulate and integrate any kinds or
dimensions of concerns simultaneously.

Much work described in the literature focuses on the separation and composition of
the concerns [11, 7]. In this paper, we describe our initial experiments with an XML-
based language and tool for separating concerns and managing variants within
concerns. We try to apply our approach to a wide range of product family assets
including domain models, documentation, generic architecture and code. We have
achieved simple forms of separation of concerns and we are investigating advanced
forms in current work.

Variants are raised from the needs of product family [9]. A product family (or
product line) is a set of products that share a common set of requirements, but also
differ in certain ways. The variants within concerns are imposed, as we have to handle
the variabilties among different product family members.

Like concerns, variants may cross cut each other: the impact of variants may scatter
across many modules and may be also tangled with the impact of other variants. As
the number of variants increases, the explosion of possible variant combinations and

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 36-47, 2001.
© Springer-Verlag Berlin Heidelberg 2001

XVCL Approach to Separating Concerns in Product Family Assets 37

complex inter-dependencies among variants may further complicate the maintenance
and evolution of the systems.

We designed an XML-based Variant Configuration Language (XVCL) [12], to
handle variants in a product family. With XVCL, we can organize and manage a wide
range of software assets such as domain models (e.g., in UML), software documents,
product family architectures, code and test cases. We use the term x-frame to refer to
the software asset in a product family instrumented for flexibility and reuse with
XVCL commands. The XVCL processor is a simple yet powerful tool that can
customize and compose the x-frames, to produce a specific system, member of a
product family. Our XVCL is inspired by the frame technology from Netron Inc. [1].
The XVCL processor is an XML implementation of the industry-proven Frame
Processor.

In our approach, concerns are encapsulated in groups of x-frames. An x-frame is
instrumented with XVCL commands that show how to incorporate variants within
concerns. Given specific variants, custom components/systems can be generated from
the x-frame hierarchy on demand. Although the XVCL was originally designed for
addressing variants within concerns, the basic concept can be extended to compose
multiple concerns as well.

In the remaining part of the paper, we will illustrate our approach using examples
from our domain engineering project on Computer Aided Dispatch (CAD) domain.

2 Related Work

As early as in 1970’s, Parnas [9] proposed modularization, information hiding and
separation of concerns principles for handling variants in a product family. Marco
processors, PCL [10], application generators [2], Frame Technology [1], Object-
Oriented framework [5], template and meta-programming techniques [3] — they all
offer mechanisms to handle variants in product family.

Recent work focuses on advanced separation of concerns. A number of approaches
have been proposed to address crosscutting concerns and concern compositions. In
aspect-oriented programming [7], each computational aspect is programmed
separately and rules are defined for waving aspects with the base code. In multi-
dimensional separation of concerns and hyperspace approach [11], hyperslices
encapsulate concerns in dimensions other than the dominant one and can be composed
to form the complete system.

Our approach, in general, falls into the category of “generative programming” [3].
In our approach, concerns are encapsulated in groups of x-frames. A specific system,
member of a product family, can be generated from the x-frame hierarchy on demand.
Unlike AOP, we explicitly mark the points where code (or other reusable contents)
related to variants (or aspects) can be inserted.

3 The CAD Domain Overview

We shall use the domain of Computer Aided Dispatch (CAD) to illustrate our
approach. CAD systems are mission-critical systems that are used by police, fire &

38 Hongyu Zhang et al.

rescue, health service, port operations and others. Figure 1 depicts a basic operational
scenario and roles of a CAD system for Police.

__________ Dispatcher

.- Incident info™~
.

_--Call Taker

S Situation
! Network _ display
Police Unit Task Manager

Fig. 1. A basic operational scenario in CAD system for Police

Once a Caller reports an incident, the Call Taker captures the details of the incident
and the Caller, and creates a task for this incident. The Dispatcher then selects suitable
Resources (e.g. Police Units) and dispatches them to execute the task. The Resources
carry out the task instructions and report to the Task Manager. The Task Manager
actively monitors the situation and at the end - closes the task.

3.1 The Initial CAD System

We adopt an use-case driven, architecture centric approach to develop the initial
(default) CAD system. The problem and solution space are decomposed along the
class boundaries, which are identified from the use case analysis and design. A three-
tiered architecture style guides the realization of the use cases.

Figure 2 gives a component view of the initial CAD system. Some of the concerns
are separated and localized. User Interface concerns are encapsulated in the UI classes
(e.g., the CallTakerUI class contains the code related to Call Taker UI). Concerns
related to business process (workflow) are encapsulated in the control classes (e.g.,
the CreateTaskProcess class localized the implementation of the Create Task business
process). Concerns related to entities are encapsulated in entity classes (e.g., Task
class contains the implementation that provides the Task data service). Data Access
class only provides the data access service.

The initial CAD system is modeled in UML, implemented in Java, and deployed
on a CORBA-compliant component platform.

3.2 Variants in CAD Product Family

At the basic operational level, all CAD systems are similar - basically, they support
the dispatch of units to handle incidents. However, considered the product family
situation, there are also differences across CAD systems. The specific context of the

XVCL Approach to Separating Concerns in Product Family Assets 39

operation (such as police or fire & rescue) results in many variations on the basic

operational scheme. Here are some of the variant requirements in the CAD domain:

1. Call Taker and Dispatcher roles (referred to as CT-DISP variant). In some CAD
systems, Call Taker and Dispatcher roles are separated (played by two different
people), while in other CAD systems the Call Taker and Dispatcher roles are
merged (played by one person). This "Call Taker and Dispatcher roles" variant has
impact on system functionalities. For example, in the former case, the Call Taker
needs to inform Dispatcher of the newly created task, but in the latter case, once
the Call Taker creates a task, she/he can straightway dispatch resources (e.g.,
Police Units) for this new task.

. Validation of caller and task information differs across CAD systems. In some
CAD systems, a basic validation check (i.e., checking the completeness of the
Caller and Task info) is sufficient; in other CAD systems, validation includes
duplicate task checking, VIP place checking, etc.; in yet other CAD systems, no
validation is required at all.

Ul Package

[Call Taker Dispatcher
ul ul
[

Task
Manager Ul

J -

/

\
|

o=

I
|

N

L CreateTask
Process
—

|

AN

\

1
A
— DispatchT ask

Process

N

==

Caller Info ‘

Location
Histroy

=

\
~
\

Business Logic Package

\A]
— UpdateTask

Process
—

"
/\

Resaurce

CloseTask
Process

/

AN

Command
[Enty
[—

Database Packjde
Nl
Data
E hccess
-

Fig. 2. The component view of the initial CAD system

40 Hongyu Zhang et al.

Feature diagrams [6] are often used to represent the common and variant
requirements in a domain. Figure 3 shows an excerpt from the CAD feature diagram.
We use extensions described in [3]. The legend in Figure 3 explains notations.
Mandatory requirements appear in all the instances of a parent concept. Variant
requirements only appear in some of the instances of the parent concept being
described. Variant requirements are further qualified as optional, alternative and or-
requirements. An alternative describes one-of-many requirements. For example, the
“Call Taker and Dispatcher roles” requirement described above has two alternative
variants: “Separated” and ‘“Merged”. An or-requirement describes any-of-many
requirements. For example, the optional “Validation” requirement has two or-variants:
“Basic Validation” and “Advanced Validation”, which means that the ‘“Validation”
requirement can be “Basic Validation”, “Advanced Validation”, or both or neither of
them.

| CAD Funetional Requinements |

Dispatch Task Timing Task Fesigmert
Fequirement
Rules
Basad on Task]
Location
Fazigned by
5 Task Operator
Delayed
Task Type

| “alidation

Call Talker and
Dispateher Roles
(CTDISM

Advanced
“alidation

Basic
\validation
heck Duplia'te Task]

[| [

P
v
e

Dielay dispateh until
higher prionty tasks ane
clozed

Fezign by
Dispatcher
Delay dispa’tch until

rumbe of free
resnuCes exceeds

Pasign by
Call Taker

Legend

Group of
Intemal Node, Group of variants ;
Intemnal Node, Group of variand — (ptional Requirement < (R Requirement

Leaf Node, ane variant

W a Altemativs Requirement
_________ ’ Dependency

Fig. 3. CAD feature model

4 XVCL: An XML-based Variant Configuration Language

XVCL [12] is a simple markup language based on XML conventions. We use XVCL
to organize domain assets and to instrument domain defaults with variants. Table 1

XVCL Approach to Separating Concerns in Product Family Assets 41

lists some of the major XVCL commands. We use the term x-frame to refer to domain
defaults instrumented with variants marked as XVCL commands. An x-frame can be
processed by the XVCL processor.

XVCL Command Description
<X-FRAME name="“name”> Denotes an x-frame.
</X-FRAME>
<X-PACKAGE name="name”> Denotes a group of related x-frames.
</X-PACKAGE>

<COPY x-frame="“x-frame”>
customization commands
</COPY>

Includes a copy of the specified x-frame
after applying customization commands to
the x-frame

<INSERT-BEFORE
name="breakpoint”>
</INSERT-BEFORE>
<INSERT name="breakpoint”>
</INSERT>

<INSERT-AFTER name=
“breakpoint”>
</INSERT-AFTER>

Allows insertions of fragments of
information at the breakpoint. The
inserted content can be placed before,
after the breakpoint, or replace the
existing content at the breakpoint.

<BREAK name="“breakpoint’>
</BREAK>

Specifies a breakpoint in an x-frame
body, where customizations may occur.

<SET name="“varname”
value="varvalue”>
</SET>

Declares an XVCL variable varame with
value varvalue.

<VAR name="“varname’/>

Denotes an XVCL variable varname.

<SELECT option="variable’>
<OPTION value="“value>
</OPTION>

Selects one of many customization
options based on the value of the
variable.

<OTHERWISE>
</OTHERWISE>
</SELECT>

Table 1. A list of XVCL commands as XML tags

Our XVCL is inspired by the frame technology from Netron Inc. [1]. Frame
method and tool have an excellent record in industrial applications. A quantitative
study has shown that Frame technology can lead to reduction in time-to-market (70%)
and project costs (84%) [1]. Frame technology is tightly coupled with COBOL. Our
XVCL supports all major frame commands and provides extensions for distributed
component-based systems written in Java. Being based on XML, XVCL is an open,
extendable and easy to use language.

XVCL helps us organize product family assets and instrument them for flexibility,
to achieve systematic and effective reuse. We applied XVCL to manage variants in
software assets such as UML domain models and product family architecture. In
domain models, an x-frame contains fragments of use case, activity diagram or object
collaboration models. In product family architecture, an x-frame may contain a

42 Hongyu Zhang et al.

component (or part of it such as method, class, declarations of data structures) or a
connector (defined, for example, in IDL).

We organize x-frames into a hierarchy that shows how to build complex x-frames
out of simpler ones. Like in aspect-oriented programming [7], we also attempt to
isolate different computational concerns (both functional and non-functional) into
separate x-frames to achieve separation of concerns. For example, data x-frames only
contain the implementation of the entity concerns. Workflow (Business Process) x-
frames only contain the code related to flexible workflow concerns. Logging x-frames
only contain the code related to the Logging concern. Different views of a domain
model are also localized in separate UML x-frames. The composition of x-frames also
achieves composition of multiple concerns.

In the rest of the paper, we will show how we apply XVCL in handling variants
within concerns, using examples from the CAD domain engineering project.

5 Applying XVCL in Handling Variants in CAD Domain

5.1 Handling Variants within Concerns

To handle variants in CAD product family, we instrument each class in the initial
CAD system (as shown in Figure 2) with XVCL commands. Figure 4 shows the x-
frame for the CreateTaskProcess class in Figure 2. The CreateTaskProcess x-frame
only pertains to the concern of Create Task business process.

<x-frame name="CreateTaskProcess”>
<set name="ERRMSG" value="Error in Creating the Task!"/>

<copy package="Common" x-frame = "Header"/>
package BusinessLogic;

public class CreateTaskProcess {
private Task aTask;
private String szErrMsg = <var name="ERRMSG"/>;

public CreateTaskProcess() {
// Class Initialization code
return;

}

<copy package = "CreateTaskFrames" x-frame = "GetCallerInfo"/>
<copy package = "CreateTaskFrames" x-frame = "GetTaskInfo"/>
<break name ="Validation”/>

<copy package = "CreateTaskFrames" x-frame = "SaveTask"/>
<break name="CT-DISP”>

<copy package = "CreateTaskFrames" x-frame = "InformDispatcher"/>
</break>

}

</x-frame>

Fig. 4. The CreateTaskProcess x-frame

XVCL Approach to Separating Concerns in Product Family Assets 43

<x-frame name="GetCallerInfo”>
public String GetCallerInfo(String szPhoneNumber) {
Caller aCaller = new Caller(szPhoneNumber); /I Create a Caller Object
String sCallerInfo = aCaller.name + aCaller.ID + aCaller.address; // Prepare the Caller Info
return sCallerInfo;

}

</x-frame>

Fig. 5. The GetCallerInfo x-frame

<x-frame name="CreateTaskProcess”>
e COPY package="Common”, x-frame="Header"/>

<copy package="CreateTaskFrames”, x-frame="GetCallerInfo”/>
<copy package="CreateTaskFrames”, x-frame="GetTaskInfo"/>

<copy package="CreateTaskFrames”, x-frame="SaveTask/ g

</x-frame>

<x-package name="Common”> <x-package name="OtherPackage”> <x-package name="CreateTajkFramedq>
<x-frame name= “Header”> <x-frame name= “xFramel”> <x-frame name= “GetCalle§info”>
</;frame> </x- frame> </x- frame>
<x-frame name= “ReportErn”> <x-frame name= “xFrame2”> <x-frame name= “SaveTask]>
</x-frame> </x-frame> </x-frame>

</x-package> </x-package> </x-package>

Fig. 6. The composition of the CreateTaskProcess x-frame

The CreateTaskProcess x-frame is composed of many x-frames, such as Header
(contains reusable program header for program description, version info, copyright,
etc.), GetCallerInfo (for the Get Caller Info function, as shown in Figure 5), SaveTask
(for the generic Save Task function), etc. The composition of x-frames is achieved by
the <copy> commands, which indicate the composition points. When the XVCL
processor encounters the <copy> command, it will import the specified x-frame from
the corresponding x-package, customize it and include it into the composite x-frame.
In this example, all x-frames that are related to Create Task are stored in the
CreateTaskFrames x-package. x-frames that can be reused by all other x-frames are
stored in the Common x-package. Figure 6 illustrates the composition of the
CreateTaskProcess x-frame.

A <break> command indicates the variation point where additional customization
may occur to cater for wunexpected variants. In Figure 4, the <break
name="VALIDATION”> command indicates the variation point brought up by the
variant requirement VALIDATION. The <break name="CT-DISP”> command
indicates the variation point brought up by the variant requirement CT-DISP.

XVCL variables, such as “ERRMSG”, provide another means to inject variability.
XVCL variables are defined with default values, which can be modified during
program customization to fit the specific requirement.

44 Hongyu Zhang et al.

5.2 Specification Frame (SPC)

In our approach, the impact of the variants is encapsulated in a special kind of x-
frames called Specification Frames (SPC). A SPC localizes the changes required for
one variant. Figure 7 shows the x-frame for the VALIDATION variant.

<SPC name="VARIANT_VALIDATION ">
<copy x-frame="CreateTaskProcess" package="BusinessLogic">
<insert name="VALIDATION">
public boolean Validation(Task aTask) {
/1 Code about BasicValidation
return ValidationResult;
}
</insert>
</copy>
</SPC>

Fig. 7. A SPC for the VALIDATION variant

The <copy> command indicates the x-frame that this variant has impact on. In
Figure 7, the VALIDATION affects the CreateTaskProcess x-frame.

The code specified in the <insert> section can be <insert>ed into/after/before the
breakpoint defined in the x-frames specified by the <copy> command. For example,
in Figure 7, the VALIDATION variant is specified as “Basic Validation”. Code that
meets the “Basic Validation” requirement can be <insert>ed into the
“VALIDATION” breakpoint defined in the CreatTaskProcess x-frame during
program customization.

Figure 8 gives an example of the x-frame that encapsulates the impact of the CT-
DISP variant. The CT-DISP variant has impact on two x-frames: the
CreateTaskProcess x-frame and the CallTakerUI x-frame. Code or x-frames that
meets the requirement of “Merged Call Taker and Dispatcher Roles” can be
<insert>ed into the breakpoints defined in these x-frames.

<SPC name="VARIANT_CTDISP">
<copy x-frame="CreateTaskProcess" package="BusinessLogic">
<insert name="CT-DISP">
<copy package = "CreateTaskFrames" x-frame = "DispatchTask"/>
</insert>
</copy>

<copy x-frame="CallTakerUI" package="UTI" >
<insert name="CT-DISP">
public void AddDispatchButton(TaskInfo taskinfo) {
/1 Code about adding a button for dispatching task
return;
}
</insert>
</copy>
</SPC>

Fig. 8. A SPC for the CT-DISP variant
5.3 Composition

Once x-frames for classes and variants are separately identified and encapsulated, the
XVCL processor can help us automate the composition process (including both

XVCL Approach to Separating Concerns in Product Family Assets 45

customization and assembly). XVCL processor is a tool that can interpret the XVCL.
During program composition, the XVCL processor reads x-frames specified in the
<copy> commands, customizes them according to the instructions, and generates the

executable source code. Figure 9 illustrates the composition process.
SPC
Variants

x-frame:

V/1: VALIDATION VARIANT_VALIDATION

Xframe:
VARIANT_CTDISP

Vn: CT-DISP
XVCL
Processor

Compose Executable Code

x-frames

Concerns
xframe:

CreateTaskProcess

C1: Create Task
C2: Caller Entity

xframe:

Cn: Call Taker Ul CallTakerUl

Fig. 9. The composition of the SPCs and the x-frames

Figure 10 shows the generated CreateTaskProcess class, which meets the specific
requirements (“Basic Validation” and “Merged Call Taker & Dispatcher Roles”) for a
specific system, a member of CAD product family.

/*

* Title: CreateTaskProcess.Java

* Description: This is the control class for creating a task business process
* Version: v1.0

*/

package BusinessLogic;

public class CreateTaskProcess {
private Task aTask;
private String szErrMsg = "Error in Creating the Task!";

public CreateTaskProcess() {
.. // Class Initialization code
return;
}
public String GetCallerInfo(String szPhoneNumber) {
Caller aCaller = new Caller(szPhoneNumber); /I Create a Caller Object
String sCallerInfo = aCaller.name + aCaller.ID + aCaller.address; // Prepare the Caller Info
return sCallerInfo;
}
public int GetTaskInfo(int nTaskID) {
.. /I Code for getting task info
return O;
}
public boolean Validation(Task aTask) {
. // Code about BasicValidation
return ValidationResult;
}
public int SaveTask(Task aTask) {

46 Hongyu Zhang et al.

/1 Code about saving a task
return O;
}
public int DispatchTask(Task aTask) {
.. /I Code about dispatching a task
return O;

!

Fig. 10. The generated CreateTaskProcess class

5.4 Handling Variants in CAD Domain Model

We construct the CAD domain model by using UML and its extension mechanisms.
Each UML diagram represents one view of a domain model. To handle variants in the
domain model, we first convert UML diagrams into equivalent textual representation.
Then we instrument the XML document with XVCL commands to accommodate
variants within concerns. We can then perform the same kind of composition on
textual UML diagram as we have done on the Java code. Finally, we convert the
generated text back to the UML diagrams.

To achieve this, we use an XMI (XML Metadata Interchange) tool Unisys
Rose/XMI to convert the UML diagrams to equivalent textual representation in XML.
XMI [8] is a new OMG standard that combines UML and XML. XMI supports
round-trip transformation of UML models from a tool (e.g. Rational Rose) to an XML
file and back without loss of information.

To conserve the space, here we do not show the example of x-frames for handling
variants in CAD domain model. We refer the reader to [4] for more details.

5.5 Variant Dependencies

Variants may be dependent on each other. For example, in the CAD domain, the
“Check Duplicate Task” variant in Figure 3 is dependent on the “Advanced
Validation”. 1f the “Advanced Validation” requirement doesn’t exist, it’s not
necessary to consider the “Check Duplicate Task™ variant at all. We modeled some of
the variant dependencies as dashed arrows in Figure 3.

As the volume of information in a domain model grows, the number of possible
variant combinations explodes. Suppose we have m variants in requirement r; and n
variants in requirement r,. The total number of possible variant combinations is m x n.
However, the total number of combinations is less if requirement r; and requirement
1, are dependent.

Variant dependencies reduce the number of possible variant combinations. It is
important to identify the variant dependencies so that the logical complexity of the
system can be reduced. In our project, we only scratched the surface of this difficult
problem. We are still experimenting with various types of variant dependencies.

XVCL Approach to Separating Concerns in Product Family Assets 47

6 Conclusions

We described an XML-based language, called XVCL, and a tool to manage variants
in product family assets. With XVCL, we can organize product family assets (such as
domain models, documents, test cases, product family architecture and its
implementation), and instrument them to accommodate variants. In our projects, we
applied XVCL to manage variants in the UML domain models and in the generic
architecture for CAD product family. We have achieved simple forms of separation of
concerns and our goal is to address advanced separation of concerns.

Acknowledgments

The XML-based tool for domain asset customization was inspired by Bassett’s
frames. This work was supported by research grant NSTB/172/4/5-9V1 funded under
the Singapore-Ontario Joint Research Programme by the Singapore National Science
and Technology Board and Canadian Ministry of Energy, Science and Technology,
and by NUS Research Grant R-252-000-066.

Reference

1. Bassett, P. Framing Software Reuse - Lessons from Real World, Yourdon Press, Prentice
Hall, 1997

2. Batory, D., Lofaso, B. and Smaragdakis, Y. JST: Tools for Implementing Domain-Specific
Languages. Proc. 5" e, Conf. on Software Reuse, Victoria, BC, Canada, 1998

3. Czarnecki, K. and Eisenecker, U. Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, Reading, 2000

4. Jarzabek, S. and Zhang, H.Y. XML-based Method and Tool for Handling Variant
Requirements in Domain Models, To appear, Int. Symposium on Requirements Engineering
(RE’01), Toronto, Canada, August 2001

5. Johnson, R. and Foote, B. 1988. Designing reusable classes, Journal of Object-Oriented
Programming, 1, 2, pp. 22-35.

6. Kang, K. et al. “Feature-Oriented Domain Analysis (FODA) Feasibility Study”, Technical
Report, CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Nov. 1990

7. Kiczales, G. et al. Aspect-Oriented Programming, Proc. European Conference on Object-
Oriented Programming (ECOOP), Finland, June 1997

8. OMG, XML Metadata Interchange (XMI) 1.1 RTF, OMG Document ad/99-10-02, 25
October 1999

9. Parnas, D. On the Design and Development of Program Families, IEEE Trans. on Software
Eng., March 1976

10. Sommerville, I. and Dean, G. PCL: A language for modeling evolving system architectures,
Software Engineering Journal, 1996, pp. 111-121.

11. Tarr, P., Ossher, H., Harrison, W. and Sutton, S. N Degrees of Separation: Multi-
Dimensional Separation of Concerns, Int. Conference on Software Engineering, ICSE’99,
Los Angeles, 1999, pp. 107-119

12. Wong, T.W., Jarzabek, S., Soe, M.S., Shen, R. and Zhang, H.Y. XML Implementation of
Frame Processor, Symposium on Software Reusability, SSR’01, Toronto, Canada, May 2001

AspectJ Paradigm Model: A Basis for
Multi-paradigm Design for AspectJ*

Valentino Vranié

Department of Computer Science and Engineering
Faculty of Electrical Engineering and Information Technology
Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava, Slovakia
vranic@elf.stuba.sk
http://www.dcs.elf.stuba.sk/ vranic

Abstract Multi-paradigm design is a metaparadigm: it enables to select
the appropriate paradigm among those supported by a programming
language for a feature being modeled in a process called transformational
analysis. A paradigm model is a basis for multi-paradigm design. Feature
modeling appears to be appropriate to represent a paradigm model. Such
a model is proposed here for AspectJ language upon the confrontation
of multi-paradigm design and feature modeling. Subsequently, the new
transformational analysis is discussed.

1 Introduction

In this paper the AspectJ paradigm model, a basis for multi-paradigm design for
Aspect]J programming language (version 0.8), is proposed. AspectJ is an aspect-
oriented extension to Java [6]. Multi-paradigm design for AspectJ is based on
Coplien’s multi-paradigm design [3] (originally applied to C++ and therefore
known as multi-paradigm design for C++) to a different solution domain. It
employs feature modeling [5] for the task Coplien’s multi-paradigm design used
scope, commonality, variability, and relationship analysis [4].

Scope, commonality, variability, and relationship analysis, which is basically a
scope, commonality, and variability analysis [I] enhanced with the analysis of re-
lationships between domains [4], is used to describe the paradigms (mechanisms
of a programming language) provided by the solution domain (i.e., program-
ming language), as commonality-variability pairings [4], B]. This way of describ-
ing paradigms is compact, but not expressive enough to meet the requirements
of the transformational analysis, a process of aligning problem domain structures
with available paradigms.

Moreover, the paradigms are often connected, but multi-paradigm design
provides no means to express how. The application of feature modeling instead
of scope, commonality, variability, and relationship analysis could help solve the
problems mentioned here, as will be shown in this paper.

* This work was partially supported by Slovak Science Grant Agency, grant No.
G1/7611/20.

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 4857, 2001.
© Springer-Verlag Berlin Heidelberg 2001

http://www.dcs.elf.stuba.sk/~vranic

Aspect]J Paradigm Model: A Basis for Multi-paradigm Design for AspectJ 49

Variability tables (from application domain SCVR analysis)

Variability dependency graph
Domain D1{main commonality of D1): v aep yorap

Parameters of Variation Meaning Domain | Binding| Default o
P1 (values (default x

. P1can|c” | value _> e
Generalization of P1 take) for P1)

amily table (from soth’ion domajn SCVR analysis)
[Commonyiity] Variapility | Binding | Instantiation| Language Mechanism
‘ é e e e S —

Figure 1. Transformational analysis in MPD.

Before presenting the actual AspectJ paradigm model, a critical survey of the
issues regarding the multi-paradigm design for C++ (Sect. 2)) and a basic infor-
mation on feature modeling notation is provided (Sect.[3]). Also, the relationship
between feature modeling and techniques used in multi-paradigm design is an-
alyzed (Sect. []). AspectJ paradigm model is then presented (Sect. [B) and the
impact of incorporating feature modeling into MPD on transformational analysis
discussed (Sect.). Conclusions and further research directions close the paper

(Sect. [1).

2 Multi-paradigm design for C++4

Multi-paradigm design (MPD) for C++ [3] is based on the notion of small-scale
paradigm [§], that can simplistically be perceived as a language mechanism (e.g.,
inheritance), as opposed to the (more common) notion of large-scale (program-
ming) paradigm [2] (e.g., object-oriented programming; see [7] for a comparison
of programming paradigms).

Figure [l gives an overview of MPD. Scope, commonality, variability, and
relationship (SCVR) analysis is performed on both domains, application and so-
lution, with results summarized in variability (one for each domain) and family
tables, respectively. The variability tables are incapable of capturing dependen-
cies between the parameters of variation (that are also considered to be domains),
so this is enabled by a simple graphical representation called variability depen-
dency graphs. Each row of the family table represents a 4-tuple (Commonality,
Variability, Binding, Instantiation) that determines the language mechanism.

The transformational analysis is actually a process of matching the applica-
tion domain structures with the solution domain ones. First, the main common-
ality of the application domain, as identified by a developer, is matched with a
commonality in the family table. This yields a set of rows in which the individual
parameters of variation are resolved. Since parameters of variation (e.g., working

50 Valentino Vranié

set management) are too specific to be matched with general variabilities (e.g.,
algorithm) in the family table, each parameter of variation must be generalized
before matching. This seem as a too big step to make at once.

The generalization problem and the fact that the matching is performed be-
tween variability table $-tuples and family table /-tuples (variability table has
no instantiation column), are eclipsed by another problem: some C++ language
mechanisms are missing from the paradigm model proposed. For example, classes
and methods (procedures) are not even mentioned. On the other hand, inheri-
tance is embraced in the model. Maybe Coplien considered classes and methods
too trivial to mention, but this has not been stated explicitly.

Moreover, C+4 mechanisms listed in the family table and negative variability
tabld] are inconsistent with those described in the text [B]. Yet another problem
with the paradigm model in MPD is that it does not capture the dependencies
between paradigms. This is an important information, since there are paradigms
that make no sense without other paradigms (e.g., inheritance without classes
in C++).

3 Feature Modeling

Feature modeling is a conceptual modeling technique used in domain engineering.
The version of the feature modeling whose notation is described here comes
from [5].

Feature diagrams are a key part of a feature model. A feature diagram is
basically a directed tree with the edge decorations. The root represents a concept,
and the rest of the nodes represents features. Edges connect a node with its
features. There are two types of edges used to distinguish between mandatory
features, ended by a filled circle, and optional features, ended by an empty circle.
A concept instance must have all the mandatory features and can have the
optional features.

The edge decorations are drawn as arcs connecting the subsets of the edges
originating in the same node. They are used to define a partitioning of the
subnodes of the node the edges originate from into alternative and or-features.
A concept instance has exactly one feature from the set of alternative features.
It can have any subset or all of the features from the set of or-features.

The nodes connected directly to the concept node are being denoted as its
direct features; all other features are its indirect features, i.e. subfeatures. The
indirect features can be included in the concept instance only if their parent
node is included.

An example of a feature diagram with different types of features is presented
in Fig. @l Features f1, fo, f3, and fy are direct features of the concept ¢, while
other features are its indirect features. Features f; and f, are mandatory al-
ternative features. Feature f3 is an optional feature. Features f5, fg and f7 are
mandatory or-features; they are also subfeatures of f3.

1 A table that summarizes language mechanisms corresponding to exceptions to vari-
ability.

Aspect]J Paradigm Model: A Basis for Multi-paradigm Design for AspectJ 51

Figure 2. A feature diagram.

4 Applying Feature Modeling to Multi-paradigm Design

Feature modeling is not unlike SCVR analysis. SCVR analysis, the heart of
MPD, is based on the notions of commonality and variability (hence the name),
and the notions of common and wvariable features is not unknown to feature
modeling.

A common feature of a concept is a feature present in all concept instances,
i.e. there must be a path of (pure) mandatory features leading from the concept
to the feature. All other features are variable, i.e. any optional, alternative or
or-feature is variable. The features to which variable features are attached are
called wvariation points.

The scope in SCVR analysis, defined as a set of entities, is nothing but the
concept in an exemplar representationE The SCVR commonalities (assumptions
held uniformly across the scope) and variabilities (assumptions true for only some
elements in the scope) map straightforwardly to common and variable features
of feature modeling, respectively.

The feature modeling enables to represent SCVR analysis commonalities and
variabilities hierarchically and thus to express relationships among variabilities.
For a solution domain SCVR analysis this means enabling to express how the
paradigms it provides are related.

The most important results of SCVR analysis are provided in variability and
family tables and variability dependency graphs.

4.1 Variability and Family Tables

Table [aligns the terms of feature modeling with its variability and family table
counterparts (the columns). Only a fraction of the information provided usually
by a feature model covers most of the needs of variability and family tables.

The parameters of variation are sometimes considered as subdomains (es-
pecially in variability dependency graphs). This is consistent with the feature
modeling; the feature can be viewed as a concept.

Binding mode in feature modeling corresponds to binding time in MPD.
The difference is that the set of binding times used in MPD is richer than the
one used in feature modeling. This is due to a fact that the binding times in

2 The exemplar view of a concept is the one in which a concept is defined by a set of
its instances [5].

52 Valentino Vranié

Table 1. Feature modeling and MPD variability and family tables.

Feature modeling

Variability tables Family tables

concept

common feature

variable feature

variation point

alternative features

binding mode

semantic description, rationale
default dependency rules
additional information

commonality domain language mechanism

commonality
variability
parameter of variation
domain (of values)
binding binding
meaning
default (value)
instantiation

MPD are the actual binding times of a solution domain, like compile time, run
time, etc. Feature modeling provides more abstract binding times, namely static,
changeable, and dynamic binding. Each MPD binding time falls into one of these
categories: source time and compile time bindings are static binding, link (load)
time binding is a changeable binding, and run time binding is a dynamic binding.

The binding time applies only to variable features. It should be understood
only as an auxiliary information to the transformational analysis. There is no
notion of a unique binding time for a whole concept, as it is the case with
a paradigm in MPD. Binding time should be indicated where it belongs—at
variable features.

The feature modeling provides no counterpart for the family table column
“instantiation” , which indicates whether a language mechanism provides instan-
tiation. This information should be provided as an attribute among the rest of
the information associated with a feature model.

Possible values for instantiation in MPD are: yes, no, not available (n/a), and
optional. It seems that no and n/a values are redundant: if a language mechanism
does not provide instantiation, it can be only because the instantiation is not
available for that mechanism. The yes value indicates that a mechanism is used
only with instantiation, while optional means that it can be used both with
instantiation and without it (a class doesn’t have to be instantiated to make a
use of the static fields and methods). Furthermore, the optional value does not
make sense in the application domain—the instantiation is either needed or not.

4.2 Variability Dependency Graphs

In variability dependency graphs, the nodes represent domains and the directed
edges represent the “depends on (a parameter of variation)” relationship; domain
corresponds to a concept or feature (considered as a concept).

Parts of variability dependency diagrams can be derived from the feature
diagrams. Commonality domain depends on its parameters of variation, or—
in the feature modeling terminology—concept depends on its variation points.
But, generally speaking, while the relationships between domains in variability

Aspect]J Paradigm Model: A Basis for Multi-paradigm Design for AspectJ 53

dependency graphs have a particular semantics, this cannot be said for the re-
lationships in feature diagrams. Moreover, the feature diagrams are trees, not
general graphs. All this suggests that variability dependency graphs should be
kept as a separate notation. For each domain from the variability dependency
graphs there should be a corresponding concept or feature in the feature model.

5 AspectJ Paradigms

AspectJ is an interesting programming language to explore in the sense of MPD
because it supports two large-scale paradigms: object-oriented programing and
aspect-oriented programming. However, large-scale view is not sufficient to make
a full use of the programming language in the design. We must turn to a finer
granularity and find out what small-scale paradigms, i.e. language mechanisms,
Aspect]J provides (referred to as paradigms in the following text). As was dis-
cussed in the previous sections, feature modeling will be employed to describe
these paradigms.

Figure[3 shows a feature diagram of AspectJ. The paradigms in the feature
diagram are indicated by a capitalization of the initial letter (e.g., Class). Bind-
ing time is indicated at variable features; if not, source time binding is assumed.
Sometimes binding time of a feature depends on other features, as indicated
in the diagram. In the text, the names of paradigms are typeset in the bold-
face style. The root of the feature diagram is AspectJ as a solution domain.
It provides the paradigms that can be used, which is indicated by modeling the
topmost paradigms as optional features.

The paradigm model establishes a paradigm hierarchy. Each paradigm is
presented in a separate diagram as an alternative to the one big overall diagram.
Wherever a root node of a paradigm tree is present, it is as if a whole tree was
included there.

6 Transformational Analysis

Transformational analysis—aligning application domain structures with the so-
lution domain ones—is the key part of MPD. The basic idea of how the trans-
formational analysis is to be performed when these structures are represented
by feature models is presented by the means of an example. Afterward, some
general observations about the process of transformational analysis are given.

6.1 An Example: Text Editing Buffers

Text editing bufferd] represent a state of a file being edited in a text editor. Text
editing buffer caches the changes until user saves the text editing buffer into
the file. Different text editing buffers employ different working set management

3 The example discussed here is an adapted version of the text editing buffers example
from [3].

54 Valentino Vranié

O O O @)

‘ Class ‘ ‘ Interface ‘ ‘ Aspect ‘ ‘ Inheritance ‘

‘ arguments ‘ return value ‘

- Yo &
‘ fields ‘ ‘Methods‘ ‘inner‘ W value| |type||value
./% ‘4‘ ./4‘ ./4‘ static: [source time]

® 0 _ :
Overloading [run time] [run time] yon_gtatic: [run time]

...[run time]

declarations ‘static join points‘ ‘dynamic join points ‘
of Methods

[compile time] [run time]

O
Introductions || Advices ‘ fields HMethods‘ ‘inner‘

‘ [compile time]

74|
... [run time]

0O O Osee

[compile timej)

return
value

Figure 3. AspectJ paradigm model.

schemes and use different character sets. All text editing buffers load and save
their contents into the file, maintain a record of the number of lines and charac-
ters, the cursor position, etc. The text editing buffer feature diagram is presented
in Fig. @ In the text, the feature names are distinguished by typesetting in the
italics style. For simplicity, binding time and instantiation were not considered.

Now that feature models of both application and solution domains are avail-
able, we can proceed with the transformational analysis. We start with the un-
changeable part of the application domain, i.e. the topmost common features.
At this level a basic class or classes might be expected. The features number of
lines, number of characters, and cursor position correspond to fields of the class
paradigm. On the other hand, yield data, replace data, load file, and save file

Aspect]J Paradigm Model: A Basis for Multi-paradigm Design for AspectJ 55

Text editing buffer
load file

save file

yield data
number of lines
‘Working Set Management ‘ Character Set DC number of characters

Working Set cursor position
Management DC

AN O

database AscIr |\ Debng Code

UNICODE
d N
e

write

=
@ £| |8
=l 2L
e s

w

LRU fixed

yield data ||replace data

Figure 4. Text editing buffers feature diagram.

correspond to method paradigm. Accordingly, text editing buffer should be a
class.

The rest of the topmost features are, apparently, variation points. The first
one is file. All the files are read and written, but there are several file types and
each one is read and written in a specific way. However, what is being read and
written remains the same: file name and contents. We would probably expect
to get the status of reading and writing. Thus we reached the leaves of the
file subtree. If we compare these leaves to those of AspectJ feature diagram,
they best match with arguments and return value. This brings us to method
paradigm for read and write features.

We go up one level and discover that database, RCS file, TTY, and Unix
file features match with the class paradigm. Accordingly, we expect that file
would be a class too; so we match it with the class paradigm. The relationship
between file and the file types matches with inheritance. Analogously, character
set would be a class, and each type of it would be a subclass of that class.

The situation is similar with working set management: each type of working
set management would be a class. But there is one difference: if we try to match it
with inheritance further, we discover that we can match the whole text editing
buffer with base type (because of yield data, replace data). So the working set
management would be a primary differentiator.

Debugging code is somewhat special. It should be possible to turn it on and
off easily (to obtain debug and production version, respectively). It is intended
for file, character set, and working set management debugging; there is a special

56 Valentino Vranié

debugging code for each of those. For example, we would like to know when the
file is being read from and written to. We already matched file with class and
reading and writing with method, so it seems we must look for such a paradigm
that can influence the execution of methods. There is only one such paradigm:
advice. As advice is available only in aspect paradigm, the file debugging code,
character set debugging code, and working set management debugging code will
be aspects. File debugging code will provide two advices, one for reading and
the other for writing a file, and character set debugging code only one, as only a
name of character set being used has to be announced.

Things are slightly more complicated with working set management debug-
ging code, as we are interested in the general operations of working set manage-
ment, as well as in the specific operations of each type of it (not displayed in the
feature diagram). This points us to inheritance: working set management de-
bugging code matches with a base aspect, while each of its or-subfeatures matches
with a sub-aspect.

6.2 Transformational Analysis Outline

The text editing buffers example disclosed some regularities in the process of
transformational analysis. The matching was performed starting at leaves to-
wards the root. Rarely the leaves were considered alone. Mostly, a feature was
considered together with its first-level subfeatures. Multiple nodes from the ap-
plication domain can match with a single solution domain node if its name is in
plural. Matching of nodes is done according to the type of the nodes, e.g. the
overall match of mandatory or-nodes is successful if a match has been found for
one or more leaves.

The matching is interdependent. If two features depend on each other, then
it matters what paradigm the first feature was matched with. In other words,
matching a feature with a paradigm constrains the further design.

Up to now, nothing has been said about how the actual matching of two
nodes is performed. This can be compared to the matching between the do-
main commonality and parameters of variation from the variability table to the
commonalities and variabilities from the family table. Two nodes match if they
conceptually represent the same thing; do they—it is up to the developer to
decide. However, a conceptual gap is significantly smaller than in the original
MPD where developer was forced to make such decisions at a very high level of
abstraction.

7 Conclusions and Further Research

The table representation of the application and solution domains used in multi-
paradigm design for C++ performs unsatisfactorily during the transformational
analysis. Moreover, the C+4 paradigm model is incomplete. The application
of feature modeling instead of scope, commonality, variability, and relationship

Aspect]J Paradigm Model: A Basis for Multi-paradigm Design for AspectJ 57

analysis leads to a more appropriate representation—the feature model—which
enables to represent relationships between paradigms.

In this paper, such a paradigm model of AspectJ is proposed. The devel-
opment of AspectJ paradigm model was based on an extensive comparison of
feature modeling and multi-paradigm design (for C++) presented in Sect. [l
The use of the AspectJ paradigm model—a new transformational analysis—was
demonstrated on text editing buffers example (Sect. [6) and then the outline of
the process was drawn. The process of transformational analysis is more visible
and easier to perform with feature models than with tables.

The AspectJ paradigm model presented in this paper provides a basis for
further research on multi-paradigm design for AspectJ and its subsequent im-
provements are expected especially regarding the transformational analysis. The
relationship of negative variability tables used in multi-paradigm design and fea-
ture modeling has to be investigated. Variability dependency graphs have to be
incorporated into the transformational analysis. The transformational analysis
results should be noted in a more appropriate form than a textual representa-
tion is. A graphical notation would be suitable here, which points to the need
for a CASE tool. Besides these immediate issues, the discussion of scope, com-
monality, variability, and relationship analysis and feature modeling has tackled
a deeper question of the relation of multi-paradigm design and generative pro-
gramming [5].

References

[1] James Coplien, Daniel Hoffman, and David Weiss. Commonality and variabil-
ity in software engineering. IEFE Software, 15(6), November 1998. Available at
http://www.bell-1labs.com/people/cope| (accessed on May 14, 2001). [48]

[2] James O. Coplien. Multi-paradigm design and implementation in C++. In Proc. of
GCSE’99, Erfurt, Germany, September 1999. Presentation slides and notes. Pub-
lished on CD. Available at http://www.bell-labs.com/people/cope (accessed on
May 14, 2001). HE9

[3] James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999. [Hg|
43 29, (0, B3l

[4] James O. Coplien. Multi-Paradigm Design. PhD thesis, Vrije Universiteit Brussel,
Belgium, 2000. Available at http://www.bell-1labs.com/people/cope| (accessed
on May 14, 2001). [48] ER, [4J

[6] Krysztof Czarnecki and Ulrich Eisenecker. Generative Programing: Principles,
Techniques, and Tools. Addison-Wesley, 2000. E8] Ul LT] BT

[6] Gregor Kiczales et al. An overview of Aspect]. In Proc. of ECOOP 2001—15th
European Conf. on Object-Oriented Programming, Budapest, Hungary, June 2001.
Available at http://aspectj.org| (accessed on May 14, 2001). Mg

[7] Pavol Ndvrat. A closer look at programming expertise: Critical survey of some
methodological issues. Information and Software Technology, 38(1):37—46, 1996.
491

[8] Valentino Vrani¢. Towards multi-pradigm software development. Submitted to
CIT, 2001. E9

http://www.bell-labs.com/people/cope
http://www.bell-labs.com/people/cope
http://www.bell-labs.com/people/cope
http://aspectj.org

Aspect-Oriented Configuration and Adaptation
of Component Communication

Dirk Heuzeroth!, Welf Lowe!, Andreas Ludwig!, and Uwe Afimann?

! Institut fiir Programmstrukturen und Datenorganisation, Universitit Karlsruhe,
Germany
2 PELAB, IDA, Linkopings Universitet, Sweden

Abstract. In order to compose components, we have to adapt them.
Therefore, we pursue a transformational approach focusing on the com-
munication view. We show how to separate the definition of communi-
cation from the definition of other system aspects, how to extract this
definition from existing systems, and how to weave it back into the sys-
tem. Our main concern is the reconfiguration of this aspect.

Keywords: Aspect-Oriented Programming, Component-Based Software
Development, Program Transformation, Program Inversion

System composition aims at plugging modules [13] or components [I5] to-
gether to construct systems. Composing modules means to establish interaction
among them. Interaction essentially consists of service calls: components offer
services to be called by other components and call themselves the services of
other components. We can reduce this further to communication (transfer of
data) and coordination (transfer of signals or control). With synchronized com-
munication we model asynchronous communication (using buffers) as well as
coordination /using synchronous communication without data transfer). There-
fore, we focus on synchronous communication as a basis.

Components are often developed independently and hence, assumptions about
the component environment are often violated. This is called a mismatch. For
instance, the signature of a service call might not match the signature of the ser-
vice definition in the component to be used. Or, interacting components might
assume they are all active and responsible for initiating action. A component is
active when it drives control of the system: it issues calls and triggers the actions
of other components. Or, the component to be used might require a call protocol
that does not match the needs of the client component.

In general, composition can only succeed when the system composer adapts
the participating components accordingly. Adaptation is also necessary when
the configuration of a system has to be changed due to some changed or new
requirements. However, current modularization mechanisms do not allow to eas-
ily separate component interaction into modules as needed. Therefore, changing
the interaction among components may involve changing all components taking
part in the interaction. Hand-crafting the changes is then necessary on design
level as well as on code level, which is both cumbersome and error-prone.

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 5869, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Aspect-Oriented Configuration and Adaptation of Component Communication 59

In the sequel, we demonstrate our technique to encapsulate communication
aspects in modules. For now, we do not deal with protocol mismatches, which in
general might lead to a complete rewrite of the algorithms concerned. Instead,
we focus on the base communication mechanism and control of activity, as well
as signature mismatches occuring in this context. Since we want to deal with
existing software systems and the construction of new systems, our technique
bases on a transformational approach that performs adaptions automatically,
thus supporting the system composer. Essentially, we regard systems as consist-
ing of several views and show how to define and integrate the communication
view.

To demonstrate our approach, we present and analyze an example that il-
lustrates the problems we outlined in the previous paragraphs. In Sect. Bl we
describe our approach. This comprises our modularized communication view,
the analyses necessary to cope with components and existing systems, the con-
figuration and transformation steps, as well as system (re-)production. We also
illustrate how to apply all these phases to our running example. Section [J covers
related work. In Sect. @l we draw conclusions and outline future work.

1 Communication Scenario

Suppose, for a first try, we build a system essentially consisting of two building
blocks, one to create the data, the other to process it, a producer-consumer
scenario. Well known instances of this elementary scheme are workflow systems,
compilers and to some degree client/server systems. Since we are only interested
in the communication aspect, we regard this scenario abstractly, ignoring the
details of a concrete instance. Suppose further that we have found two suitable
components in our library that we would like to use; Figure [ll shows an example
code in Java. On first glance, the use protocol requires to introduce a Producer p
and a Consumer c to each other (p.setPar‘tner (c); c. setPartner(p);) and to initiate action
(p. start (); c. start (),)

Unfortunately, these components cannot interact in their present form. The
producer assumes to be active and thus calls the consume method of consumer,
transferring the Product data as parameter. The consume() method of the con-
sumer, however, does not accept parameters, because the consumer assumes to
be active, too. Thus, it calls the produce() method of the producer and expects
a value returned from this method call. This signature mismatch is detected
easily by the compiler or linker and is a consequence of the activity mismatch
underneath. This kind of mismatch is rather frequent. It arises when mapping
an object oriented design model to an implementation: in object oriented mod-
els, objects are usually considered active. The task of replacing communication
mechanisms is also often found in reengineering scenarios.

To get rid of the mismatches, we have to adapt the participating components
according to the following options: (1) We can make the producer active thus
controlling communication and transform the consumer into a non-driving server
component. (2) Instead, we can make the consumer the sole communication

60 Dirk Heuzeroth et al.

public class Producer {
private Consumer consumer = null;
public Producer() { }

public Producer(Consumer c) {
setPartner(c);

}

public void setPartner(Consumer c) {
consumer = c;

}

public void produce() {
Product p = new Product ();

System.out. println (p+"_produced.");

consumer . consume(p);

public class Consumer {

private Producer producer = null;
public Consumer() { }

public Consumer(Producer p) {
setPartner(p);

}

public void setPartner(Producer p) {
producer = p;

}

public void consume() {
Product p = producer.produce();
System.out. println (p+"uconsumed.");

public void start() {

public void start() { for (int i =10; i > 0;—i) {
for (int i =10; i > 0;—i) { consume();
produce(); }
}
} }

Fig. 1. A Producer and a Consumer Component

driver. (3) We can turn both components into non-driving ones that are driven
by the using component. (4) We can leave both components driving control.
This requires changing the communication from direct to indirect via a buffer
acting as a mediator. Options (1), (2) and (3) are applications of a program
transformation scheme called program inversion [6l8].

The most severe case is changing from possibility (4) to any form of direct
communication, since this comprises eliminating the buffer and therefore inva-
sively changing every involved component: replace calls to the buffer by calls of
services of the corresponding partner, then modify the initialization that makes
the components know each other. This demonstrates that communication is not
sufficiently encapsulated by current object oriented techniques.

2 Approach

Our task is to perform necessary adaptions of component interactions. Since the
adaptions are invasive, it is dangerous and error-prone to perform them manu-
ally. We thus propose automatic adaptation driven by configuration information
defining the setting to produce. To be useful for system construction and system
composition, the system constructor must not be burdened with the invasive
nature of adaptation but should only think and work in terms of adding or
exchanging system properties. We have to hide the invasive nature of changes.
First, we define an abstract modularized communication model that allows
to configure the desired communication pattern (Sect. [ZI)). If we design from
scratch, we could start with this abstract model. In reengineering or component-

Aspect-Oriented Configuration and Adaptation of Component Communication 61

Abstract
- Communication -
' Model 1
1 1
1 1

A2 \'2
Program P1 Program P2
s " . Configured .
Source Code Analysis Abstract Model Configuration Abslrzi:l Model (Re—)Production| sgurce Code
of Instance Instance . of
— components for Program P1 for Program P1 Transformation | - adapted components
— existing systems — restructured systems

Fig. 2. Transformational System Configuration Approach

based scenarios, we construct this model using analyses that extract the relevant
information from the sources (Sect. Z2)). Changing the abstract communication
selects the actual communication pattern (Sect.2.3). This step is independent of
the programming language. Finally, the transformation step encodes the selected
pattern in terms of the target programming language (Sect. 2.4). Figure[2 illus-
trates the whole process. In Sect. 2.4l we will show how to apply our approach
to the example presented in Sect. [I1

2.1 Modularized Communication Model

As argued in the introduction and illustrated by the example in Sect. [l calls of
services are the relevant “hot spots”, because these are responsible for interac-
tion. We thus encapsulate calls that belong to the same communication relation
of a module in a port. We explicitly represent communication by the communica-
tion primitives in() and out(). These are methods of an abstract communication
channel, similar to CSP [B]. A channel connects communication partners and is
a simple connector in the sense of architectural systems [4[T4]. Technically, a
channel is an abstract data type at first.

public interface Channel<DataType> {
DataType in();
void out(DataType c);

}
The communication primitive out() writes the data given as parameter to the
channel; in() reads data from the channel and provides it as return value.

Both methods are synchronous in the sense of the Ada rendez-vous: A call
to out () blocks until the corresponding call of in() and vice-versa. For an
asynchronous out (), the channel acts as the receiver of data so that the caller
can proceed immediately. The channel buffers the data. For an asynchronous
in(), the channel stores the request for data but the receiver only blocks if the
data is actually required.

The different kinds of semantics of a communication are determined by a
concrete configuration. We deal with this in more detail in Sect. 2.3l On the

62 Dirk Heuzeroth et al.

class Producer { class Consumer {
private Channel<DataType> c; private Channel<DataType> c;
public Producer (Channel<DataType> c) public Consumer (Channel<DataType> c¢) {
this.c = ¢; this.c = c;
} }
public doSomething() { public doSomething() {
some calculations... c icati cati some calculationms...
) ommunication Communication T
cout(d); —————@ Out-Port In—Port [= d = c.in();
further calculations... further calculations. ..
} }
DataType
Channel Channel
in() : DataType in() : DataType
out (d : DataType) out (d : DataType)

Fig. 3. Components with a communication out-port and an in-port, respectively.

class Producer { class Consumer {
private Channel<DataType> c; private Channel<DataType> cC;
public Producer (Channel<DataType> c) |{ public Consumer (Channel<DataType> c) {
this.c = c; this.c = ¢

} N PN I ' }
! Abptract Communication Connectof !

public doSomething() { ! | public doSomething() {
some calculations. .. : c . o ! some calculations...
c.out(d); —————————@ | Gu-Port 1 In-Port o

further calculations...
DataType
Channel

in() : DataType
out (d : DataType)

d .)i
further calculationms...

Fig. 4. Two components connected via an abstract communication connector

current abstraction level, we only care about the most essential communication
aspect, i. e., the kind of data (DataType) and the points where data is written or
read respectively. We thus define:

Definition 1 (Abstract Communication Ports). An abstract communica-
tion in-port of a component is the set of calls to the method in() of the same
abstract channel. Its type is the return type of the in() method.

An abstract communication out-port of a component is the set of calls to the
method out() of the same abstract channel. Its type is the type of the parameter
of the out() method.

The set of abstract communication ports of a component defines its abstract
communication interface and thus its abstract communication behavior.

Since ports aggregate communication calls that belong together, they allow
their consistent change and management. Components indicate via their ports
that data of a certain type is transmitted to or received from another compo-
nent. Thus, the identity of a communication partner may be unknown until the
component is composed. The concept of communication ports is illustrated in
Fig. Bl Component Producer is equipped with a communication out-port and
component Consumer with a communication in-port. Both components indicate
their communication needs and requirements, but are not yet connected to each

Aspect-Oriented Configuration and Adaptation of Component Communication 63

other. Hence, they can be used in different communication contexts. This leads
to our definition of the term component:

Definition 2 (Component). A component is a module with an interface that
is prepared to exchange the communication coupling of the component via ports.

We now want to specify that component Producer communicates with com-
ponent Consumer by transferring data of type DataType. To express this, we
introduce the notion of an abstract communication connector.

Definition 3 (Abstract Communication Connector). An (abstract) com-
munication connector s a relation among communication out-ports and commu-
nication in-ports that emit or accept data of the same data type.

The relation establishes a connection between components by associating
corresponding in- and out-ports to the same abstract channel. Figure @ shows
the result of applying an abstract communication connector to the components
of Fig. Bl Components, ports and connectors are the elements of the abstract
communication layer in our modularized communication view model.

2.2 Analyses

Analyses should detect the essential communication in a program, i. e., the
in- and out-ports as designed. Let us assume for a first try that out-ports are
parameters of method calls and return calls, and in-ports are formal parameters
of methods and return points. Then it is trivial to detect in- and out-ports by
static analyses.

Although this approach works for most practical cases, it fails for popular
idioms like call-backs and events. In these architectures, the initial call only iden-
tifies the callee for the actual communication. Even worse: usually, a container
captures the event listeners. If an event is fired, an iterator over this container
delivers abstract event listener objects that receive the event object, which is the
essential communication. This cannot be detected by static analyses, in general.

In order to detect the essential communications in a program we ought to
merge static and dynamic analysis results. The VizzAnalyzer is a Java framework
designed to perform such analyses. It consists of a package for the static analysis
called COMPOST and a package for dynamic analysis and result visualization
called VizzEditor.

The COMPOST [2[T1] framework performs static analyses and program trans-
formations. The architecture is actually tailored to automate source code trans-
formations. It consists of a compiler front-end, a pretty-printer as a back-end,
and a library of small analyses, program generators and transformations. Cur-
rently, the front-end tool supports Java sources only, but the architecture works
fine for other programming languages as well. The front-end performs syntactic
and semantic analysis including name and type analysis and provides a con-
venient API to access the results. Except for trivial cases, it is not statically
computable which method or attribute is actually called or accessed at run time

64 Dirk Heuzeroth et al.

and how often. Even data flow analyses cannot predict all branches and loop
iterations. Similarly, it is not statically computable which concrete method is
called on a polymorph call. An additional problem is the detection of implicit
method calls as they occur if a default constructor of a base class is called. As
objects are created at run time, relations over objects are dynamic by nature.
All these relations can only be computed dynamically for a concrete program
run.

The VizzEditor [10] framework provides run time information and visual-
ization. Therefore, it accesses a debug interface and maps the obtained data
to graphical imaging tools. The information to visualize is accessed at prede-
fined program points such as method entries and exits or read/write accesses to
variables (local variables and attributes), and at user defined breakpoints. The
results of the dynamic analyses are displayed by the imaging tools. The package
contains views for class, inheritance and call graphs.

In order to find event source - event handler pairs, we perform static analyses.
COMPOST computes the class, inheritance and call graphs. Here, we easily find
the program parts conforming to the event handler and source patterns. For
these program parts (classes) we enable method calls for the dynamic analysis
by the VizzEditor. We track the actual object identifiers sent to the potential
event source and the calls back to these objects. Only those parts that match
the dynamic pattern for event source - event handler pairs are finally displayed.

The method is not complete. Program parts that are not executed at run time
cannot be refined. However, one may argue that parts that are less frequently ex-
ecuted are also less critical for restructuring. Still, we achieve an advantage com-
pared to approaches depending on naming conventions: naming conventions can
be broken and often are, especially in legacy programs requiring a re-engineering.

2.3 Configuration

Having specified the behavior of components in the abstract communication
layer, we now substantiate communication by specifying different kinds of inter-
action patterns of calls to in() and out (), such as buffering, coordination, and
destructive/non-destructive reading. Additionally, we specify activity and dis-
tribution patterns and communication mechanisms. We offer several connectors
for common instances of the above configurations. Users may add further con-
nectors by implementing the Channel interface. It is also possible to add further
mechanisms to the above categories.

Substantiating the Semantics of the Abstract Channel The definitions of
in() and out() in the abstract communication layer leave the interaction of calls
to these methods open. This means, we did not specify the result of for example
out(pl) out(p2) p3 =in() p4 =in (). If p3.equals(p2) and p4.equals(pl) hold, then
the channel acts as a LIFO store (a stack). If p3.equals(pl) and p4.equals(p2)
hold, then the channel acts as a FIFO store (a queue).

The next point to determine is the coordination behavior of in() and out().
For asynchronous calls, the channel needs to buffer the data. Otherwise, it must

Aspect-Oriented Configuration and Adaptation of Component Communication 65

synchronize its clients. The last point concerns the kind of reading: Does calling
the in () method destroy stored data or not? This distinction is important in case
a piece of data shall be communicated to a set of components in a multi-cast.
If the first read access destroys the piece of data, it cannot be delivered to all
components except if it were stored in the buffer in a sufficient amount.

Activity and Distribution In our running example from Sect. [[] we illustrated
the effects of marking components active. A component may act as a driver in one
relation involving a set of methods and as a server in another relation involving
another set of methods. Therefore, we assign an activity property to every method
of a component.

The distribution aspect maps components to machines. It influences the ac-
tual communication mechanism that can be employed.

Communication Mechanisms There are different mechanisms that can be
used to transfer data from one place to another. The principle of all mechanisms
is to make data available in a storage location that the receiver can access. There
are different forms of data transfer that follow this principle. Firstly, data may
be written to and read from a shared memory location by direct memory access.
Secondly, data may be sent from one location to another: either it is stored in
buffers, directly transfered into the address space or local memory of the receiver,
or passed as a parameter of a procedure call.

Procedure calls include communication and coordination. Depending on the
distribution aspect, procedure calls can be local or remote. If two components
are to communicate that are configured to run on different machines, a local pro-
cedure call cannot be employed. Of course, transfering data into a buffer may
also involve procedure calls and parameter passing. We distinguish these cases
nevertheless, because we regard buffered communication as indirect communica-
tion and passing data via a parameter to its recipient as direct communication.
The above aspects lead to the following definition:

Definition 4 (Communication Configurator). A communication configu-
rator is a connector that defines the concrete semantics of the methods in() and

out().

A configurator is a metaprogram that defines a concrete class or object for
the Channel interface for every communication relation. Moreover, it contains the
communication mechanism to employ: buffered communication, direct memory
transfer, or parameter passing via procedure calls. It adapts the concerned com-
ponents and their use contexts accordingly.

Together with the activity and distribution aspects, the complete semantics of
a communication is given. A communication configurator takes these aspects into
account when they are mixed in. Fig. Blillustrates a communication configurator.

66 Dirk Heuzeroth et al.

class Producer { class Consumer {
private Buffer<DataType> b; private Buffer<DataType> b;

public Producer (Buffer<DataType> b) public Consumer (Buffer<DataType> b) {
this.b = b; -+ this.b = b;

Abgtract Communication Connectof

public doSomething() { ! public doSomething() {
some calculations. .} : i y ! . some calculations...
s cale ; : C ¢ : L Ao pin0;
_out (d) ; OutePort = b.in()

further calculations... further calculations. ..
DataType
Buffer

in() : DataType
out (d : DataType)

In—Port

Fig. 5. A Configured Communication

Generalization More generally, ports and connectors are aspects in the sense
of aspect-oriented programming [9], since they encapsulate code that cross-cuts
the class structure of a system. We thus define:

Definition 5 (Aspect). An aspect is a meta-object where 1. the data part
contains the links to the concerned components, and 2. the program part s a
(meta)program that adapts the concerned components identified by the data part
according to configuration information.

Since aspects are (meta-)objects, they can be regarded as components, too.
Ports are aspects with empty program part. Connectors are components.

2.4 System (Re-)Production

The last step is to reproduce the source code of the working system. This is the
task of the metaprograms contained in the connectors and includes the map-
ping of the configuration to a concrete programming language. Since we are not
interested in cross-language transformations, we always retain the component
programming language.

Ezample Revisited Reconfiguring our initial example so that the producer com-
ponent drives control and communicates with the consumer as server component
via a local procedure call would normally require to invasively change both com-
ponents. Instead, we just feed our communication configurator with this con-
figuration information and trigger system reproduction. The result is shown in

Fig. B

Aspect-Oriented Configuration and Adaptation of Component Communication 67

public class Producer { public class Consumer {
private Consumer consumer = null; public Consumer() { }

public Producer() { }
public void consume(Product p) {
public Producer(Consumer c) { System.out.printin(p+" consumed.");
setPartner(c); }

} }

public void setPartner(Consumer c) {
consumer = c;

}

public void produce() {
Product p = new Product ();
System.out. println (p+"_produced.");
consumer.consume(p);

}
public void start() {
for (int i =10; i > 0;,—i) {
produce();
}
}

Fig. 6. Initial example reconfigured

The out-port of the producer component coalesces with the activiation of the
consumer component via the call to consume. It is thus represented as actual
parameter to the call. The in-port of the consumer component is represented by
the formal parameter of the consume method. Since we consistently generated
these adaptions from the configuration information, we resolved the signature
mismatch due to control violation presented in Sect. [Il.

3 Related Work

The different techniques to realize modules like for example object-orientation
did not succeed to encapsulate all items of change, especially interaction. This
has also been noticed by other researches who proposed new techniques or con-
cepts.

Architectural systems [4/14] employ ports and connectors to encapsulate com-
munication, too. These systems cannot handle existing code. Further, they only
offer means to wrap building blocks, thus missing the power of invasive changes.
Grey box connectors introduced in [I] try to alleviate the shortcomings of archi-
tectural systems. To reconstruct module connections, this approach requires the
system composer to explicitely mark ports by special hooks. This restricts the
applicability of the approach compared to our approach.

The work on communicating sequential processes (CSP) [5] constitutes the
basis of our communication model. A shortcoming of the original work concerns
the encapsulation of communication. Connectors must be realized by separate
processes. The basic adaptation technique is wrapping. Relationships between a

68 Dirk Heuzeroth et al.

process interface and its internal structure are not considered. No effort is made
to deal with existing code.

Several other approaches criticize modules as inadequate to encapsulate all
items of change. Aspect-Oriented programming [9] introduces the notion of cross-
cut: Code that cannot be encapsulated in modules. This approach collects cross-
cuts in so-called aspects. Similar approaches introduce subjects [3] or hyper-
slices [12]. These approaches claim to introduce new encapsulation concepts. In
fact, these concepts are equivalent to modules but introduce new mechanisms.
Compared to those, our ports are hyperslices as well as aspects. Our connectors
are aspects. These approaches are too general to attack the source of mismatches
and ignore that cross-cutting only occurs when systems are mapped to imple-
mentations. Cross-cutting is not a problem of the module concept, but the im-
plementation facilities. Since current mechanisms (especially object-orientation)
are obviously useful, we choose to enhance them to overcome the interaction en-
capsulation shortcoming. This allows us to cope with existing code and is thus
preferable to inventing a new language. No matter what language we could have
defined, it would not be able to overcome all mismatches.

4 Conclusions and Future Work

Our communication model allows to hide the invasive nature of changes, since
changing communication behavior now means to give a corresponding configura-
tion, add or exchange ports and connectors. Internal changes of components are
hidden in the metaprograms of the connectors (aspects). Moreover, the model is
independent of a certain programming language. The source code parsing and
analysis phase allows to deal with existing systems or components. The config-
uration phase enables adapting components and restructuring of systems. Since
we reproduce source code, the configuration and transformation results can be
further processed by other tools.

Our procedure allows to execute desired changes (semi-)automatically and
consistently. Thus, it supports the system composer and prevents errors which
a human would probably introduce when performing changes manually. Hence,
we meet our initial requirements.

We left some problems open. We did not discuss methods with side effects
that are mapped to direct calls to perform the communication. In this case we
must split communication from the side effect computation. Our simplified view
may nevertheless be constructed by normalizing the code first [I1]. Moreover, we
only sketched the difficulties of retrieving all necessary information by static and
dynamic analyses. Version management issues have been left out completely.

An issue of further research is the scalability problem: the numerous ports
in an existing system require a recursive approach. Fortunately, components can
be composed to larger components which, in turn, may be composed again. This
should enable us to apply our method also to larger systems. Currently, we apply
our approach to Linux components [7] within the scope of IBM“s SawMill-Linux
project.

Aspect-Oriented Configuration and Adaptation of Component Communication 69

References

1.

2.

e

10.

11.

12.

13.

14.

15.

U. ABBmann, T. GenBler, and H. Bar. Meta-programming Grey-box Connectors.
In Proceedings of the 33rd TOOLS (Europe) conference, 2000.

Uwe Afimann, Andreas Ludwig, Rainer Neumann, and Dirk Heuzeroth. The COM-
POST project main page. http://i44www.info.uni-karlsruhe.de/ compost.
Siobhan Clarke, William Harrison, Harold Oshher, and Peri Tarr. Subject-Oriented
Design: Towards Improved Alignment of Requirements, Design, and Code. In
OOPSLA, volume 34, pages 325-339. ACM SIGPLAN, ACM, Oct 1999.
David Garlan and Mary Shaw. An introduction to software architecture. In V. Am-
briola and G. Tortora, editors, Advances in Software Engineering and Knowledge
Engineering, volume 1, pages 1-40, Singapore, 1993. World Scientific Publishing
Company. BT

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. [B1] [G7]
Michael A. Jackson. Principles of Program Design. Academic Press, 1975. B0
Trent Jaeger, Dirk Heuzeroth, and Uwe Afimann. Automating the management
of reusable system components. In Proceedings of the 7th HotOS-Workshop, 2001.

Tutorial JSD/JSP. http://cisx2.uma.maine.edu/NickTemp/JSP&JSDLec/jsd.html.
60!

Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier, Cristina Videira
Lopes, Chris Maeda, and Anurag Mendhekar. Aspect-oriented Programming. In
ECOOP’97, pages 220-242. Springer-Verlag, 1997. [66]

Welf Lowe, Andreas Ludwig, and Andreas Schwind. Understanding software -
static and dynamic aspects. submitted to 17th International Conference on Ad-
vanced Science and Technology, 2001.

Andreas Ludwig and Dirk Heuzeroth. Metaprogramming in the Large. In
Net.ObjectDays 2000 Tagungsband, 2nd International Conference on Generative
and Component-Based Software-Engineering, pages 443-452, October 2000. [63]
63|

Harold Ossher and Peri Tarr. Multi-Dimensional Separation of Concerns in Hy-
perspace. Technical report, IBM T. J. Watson Research Center, April 1999.
D. L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053-1058, December 1972.

Mary Shaw and Paul Clements. Toward boxology: Preliminary classification of
architectural styles. In Joint Proceedings of the Second International Software
Architecture Workshop and International Workshop on Multiple Perspectives in
Software Development, pages 50-54, 1996. [G1], 67

Clemens Szyperski. Component Software, Beyond Object-Oriented Programming.
Addison Wesley, November 1997.

A Version Model for Aspect Dependency
Management

Elke Pulvermiiller!, Andreas Speck?, and James O. Coplien®

! Institut fiir Programmstrukturen und Datenorganisation,
Universitaet Karlsruhe,
D-76128 Karlsruhe, Germany
pulvermueller@acm.org
2 Intershop Research Jena
D-07740 Jena, Germany
andreas.speck@intershop.com
3 Bell Laboratories Lucent,
Naperville IL, USA
cope@research.bell-labs.com

Abstract. With Aspect-Oriented Programming (AOP) a new type of
system units is introduced (aspects). One observed characteristic of AOP
is that it results in a large number of additional (coarse-grained to fine-
grained) system units (aspects) ready to be composed to the final appli-
cation. With this growing number of system units the dependencies be-
tween them become vast and tangling. This results in the necessity of an
improved management of the dependencies between these system units.
Our paper investigates this problem, proposes a more general model
(version model) to capture different facettes of AOP as well as a partial
solution towards unit consistency based on versions.

1 Introduction and Problem

Aspect-oriented programming (AOP) extends the potential of common (e.g.
object-oriented) software engineering allowing an improved realization of the
“Separation of Concerns” principle [26]. Besides classes and objects, aspects are
an additional type of system units. They serve to localize any cross-cutting code,
i.e. code which cannot be encapsulated within one class but which is tangled over
several classes [20]. Therefore, an aspect is a specific type of concern, namely a
cross-cutting concern [19].

Beyond the identification and definition of aspects a further problem arises:
How can an aspect configuration be verified and how can the correctness of their
mutual dependencies and interactions be proved? The more aspects available
the more complex and error-prone their combination if manually practiced. The
importance of this problem in the context of aspect-oriented programming has
already been detected in research as may be observed in [32], [31] and [28].

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 7079, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Version Model for Aspect Dependency Management 71

Examples of dependencies in practice are:

— Telecommunication domain:

A telephone switching station has to provide many different services. Some
of them are cross-cutting and may be captured in aspects. Inserting aspects
into the running system to extend the functionality may lead to interac-
tions between the newly inserted units and the system units already part
of the system. Research exists dealing with that problem (but still without
employing supportive AOP concepts) [12].

— Aspects in distributed systems [27]:

In CORBA systems the communication code is strongly interwoven with the
application code. In order to keep an application independent from the com-
munication technique the communication code may be separated in aspects.
When a client wants to access a service exposed by a specific server the client
has to obtain an initial reference to the server. This can be done either via
a name server or via a file-based solution (the reference is stored as a string
in a file which is accessible for clients and server). Aspects realizing one of
these two alternatives are exclusive. This is already known at design and
implementation time.

— Cross-cuts in embedded systems [30]:

In the growing market of small embedded systems software is often reused
when the same control hardware is modified in order to perform similar ser-
vices. In the growing market of small embedded systems the industry aims at
reusing both control hardware (with small adaptations to perform the spe-
cific services) and the corresponding software. The same microcontroller with
a core software may be used in digital I/O devices or analogue I/O devices
as well as in incremental resolvers. Except to a few statements (handling the
internal data-flow) the software may be the same for all these devices. Be-
sides a few adaptations of the software statements the software for all these
devices may be reused. These statements may be ideally realized as aspects.
The problem here is to assert that an aspect set woven into a specific base
code is complete and that there are no data-flow statements missing (espe-
cially with respect to security and error handling code). Similar problems
may be found when the systems have to be adapted to different often very
similar field-bus protocols.

— In the AOP workshop at Rennes [T9] L. Seiturier presented a Virtual Virtual
Machine (VVM) [6]. A VVM is a micro-VM loading VMlets. A VMlet is
similar to an Applet but describes an execution environment instead of an
application. This technology provides an open virtual machine, a (micro)
runtime, where each domain expert may build his/her specific execution
environment adding or modifying functionality (by means of VMlets). Some
of the VMlets may be aspects. The VVM, therefore, weaves aspects into a
base system.

However, no coordinator or similar technology is implemented to avoid clashes
between the separately loaded VMlets. If a VMlet is dependent (e.g. via ini-
tialization) from another one an error occurs.

72 Elke Pulvermiiller et al.

In the remainder of the paper we introduce a version model and show how
it captures and extends the idea of AOP in a more general way and, moreover,
how it provides a means to preserve consistency and correctness. The approach
presented is not limited to AOP but may be employed for any kind of feature
composition. Section [3] examines the consistency and correctness conditions in
more detail. Some related work may be found in section [4

2 Version Model

Aspects may cross-cut object systems [20] on various levels of granularity: For
instance, entire architectures may contain tangling classes or methods, classes
may be cross-cut by methods or attributes and methods may be intersected by
single statements.

Our approach for the aspect dependency problem is based on a broader
viewpoint onto the different granularity levels of aspects: a version model. The
version model integrates consistency and dependency management in a natural
way. It allows the description of the internal structure of an aspect as well as
the dependencies between aspects of a set.

The versions we discuss in our approach may be stored in versioning systems
as elaborated e.g. in [I3], [23] or [3]. Note that in contrast to that work, we
do not focus on the administration and storage of different versions of software
systems. In our approach versions are issues of system construction with aspects.
However such versioning systems may be applied to manage the versions of our
approach. The described version model and existing systems or research in the
area of versioning systems, respectively, may complement one another.

A version model is a model explaining the construction of software systems
using the notation of versions. A version describes a software core which may
contain other versions and has to consist of a valid set of conditions.

Definition: (Version)
The symbol reflecting a version is V;* where k represents the granularity (0
stands for the most low-level granularity) and 4 gives the index distinguishing
between versions on the same level of granularity.

Now we can inductively define the construction of versions:

Version VY = 1 A Cond

where Cond} represents the condition [that has to be true for one version
VY on level 0.
VY € VY where

v = (v’
j=1
is the set of all versions on level 0.

! Several conditions may be unified in one condition.

A Version Model for Aspect Dependency Management 73

Similarly we can define the induction step:

m
Version V"™ = /\VJ" A Cond™™
j=1

with
Cond™™ is true,
1<I<m<|VT,
vitev®
O

In other words: a version is a set of conditions (a unification of the particular
conditions of a certain version and all conditions of the subversions contained in the
version). A condition is expressed as boolean expression (cf. section [3]).

The operands in such an expression are conjunction, disjunction, negation. An
example for a condition may be:

V2 A (=C3V C4) A (V3 A C3)

where C3, C4 represent some defined conditions (e.g. C3 represents something like
“This version is only reasonable if used in France since the dialogues are in French
language.”)

The condition Vn (in the example: n = 2 or n = 3) means that a version V;* for
one possible k and ¢ with name Vn is part of the (partial) system.

We now use this version model to model both individual aspects as well as sets of
aspects forming a valid configuration (i.e. resulting in a valid and reasonable system
when woven). In fact, the border between these two poles is not fixed but is viewpoint
respectively design dependent.

Some of the atomic conditions (in the first case), for instance, have the following
appearance: C1 = “Statement 1 (code line 1) has to be in the aspect” = S1, C4 =
“Statement 4 has to be in the aspect” = S4. These atomic conditions filter (and thus
structure) some part of the total code into aspects.

Atomic conditions in the second case (i.e. the modeling of valid aspect sets based
on versions) are, for instance: A1 = “Aspect with name Al has to be part of the
system”, A2 = “Aspect with ID A2 has to be part of the system”. There are different
possibilities to uniquely identify an aspect (e.g. by name or by unique identifier).

Figure [[lshows an example for the second problem discussed in section [l We demon-
strate the usage of versions to model the construction:

— Example for modeling individual aspects (fine-grained):
Based on a file containing statements (lines of code) as depicted in figure[ll a version
reflecting an individual aspect may be constructed as follows.

Version V! = 1 A O}

with C} = C1 A C2 A ~C7 and the atomic conditions Cn = “Statement n has to
be part of the aspect” = Sn, n € {1,2} and C7 = “System is built for France”
(additional condition).

74 Elke Pulvermiiller et al.

Condition: ‘ ‘
C1 =»Statement no. 1 has to be inserted« !

. \
or = »Declaration of a server reference variable has | 7 2, System is built for ance«%
to be inserted« 7 ’

|
| Version: (V1 =C1 n C2 A—-C7)
| <

1. DecZaratzion: Server serverRef <&

2. code statement Condition:

3. code statement C2 = »Statement no. 4 has to be inserted«
or = »Access to file has to be inserted«

4. Read reference zo server from file: <& .

serverRef = get reference from »filename« ‘

Version:
(V5=V1AV2A

|
|
| . V3 A=V4)
|
|

5. code statement —l Verlon: V2=C3

<%

|
|
|
|
!
|
|
T~ 7" AVersion: (V3 =C4 v C5)

|

| “
7 i |
‘ | |
| |
| —O ‘
| |
| |

Granularity | Granularity | Granularity
Level 0 ! Level 1 " Level 2

Fig. 1. Versions in a Distributed System

Note that we start with granularity 1 in this case. Granularity level 0 reflects single
statements or their existence respectively.

Besides the construction of aspects, the version model also serves to express the
proper combination of aspects which is a logical and consistent continuation of the
first case but on a higher granularity (cf. the following example).

— Example for modeling a set of aspects forming a valid configuration
(coarse-grained):
Figure [contains a version (V5 respectively V52) for a distributed system built
from individual aspects. V2 consists of Vi' and V' and V5 but excludes V. In
other words V& is valid when all the expressions or conditions of Vi, V4 and Vi
are true and VJ! is false. Note that the versions of granularity level 1 also contain
conditions which have to be true otherwise these versions are not valid. E.g. Vi
may represent the file-based reference of the server (expressed by C{ and C3) from
non-French systems (represented by —=C%).

The version model, therefore, provides a consistent support for the software devel-
oper giving aid in producing semantic reasonable aspects and aspect combinations. It
is independent of the underlying implementation language and technique realizing the
concrete aspects and software system (e.g. AspectJ [I], HyperJ [3], meta-programming
approaches or transformation systems [I5], [24], [2], [L0], respectively). The advantage
of this formalization is that it provides a base for automatic configuration and checking.
Having defined all relevant conditions it becomes possible to evaluate these boolean
expressions and to find combinations which are semantically wrong (then the boolean
expression of the version is false).

A Version Model for Aspect Dependency Management 75

3 Conditions

There are several issues to be considered with respect to conditions: The classification,
detection, collection, storage and evaluation of conditions as well as the different ways
to express conditions in a formal way (allowing automatic evaluation). Each is an area
of research by itself and in this paper we only touch some of these issues.

The concrete conditions are application dependent which means that they appear
during the problem analysis and design of a system. Storing the conditions, i.e. the
versions, in a repository results in a better reuse [2I]. Besides the reuse of the aspects
and additional system issues it becomes possible to use existing condition information
to decide whether the reuse is semantically reasonable in a certain context.

Set of
features Requirements
F1, F2, F3 F2

Level

Implemented by

Set of
implementations

Level

v
@ j Implementation

— all implementing F1

Set of alternative implementations B]

Fig. 2. Relationship between Requirements and Implementation Level

Following the traditional model for software development we can distinguish be-
tween two levels of semantic knowledge: Conditions referring to the high-level require-
ments and features and conditions on the level of the individual implementation. There
is a clear connection between these two levels as exposed in figure 2L

Formally the relationship can be expressed as follows:
Ul, U2 € Setl; F1, F2 € Set2 where Setl is the set of implementation units and Set2
is the set of features on the requirements level. Let us assume that U1l implements
(besides others) feature F'1 and U2 implements F'2 then the following property holds:

valid(U1,U2) = valid(F1, F2)
valid(F1, F2) # valid(U1,U2)

76 Elke Pulvermiiller et al.

with function

1 : X and Y form a
valid combination

0 : X and Y form an
invalid combination

valid(X,Y) =

Function valid(X,Y’) may be calculated by evaluating the binary condition expres-
sions.

The distinction between requirements and implementation level is not only limited
to the development phase of a system or aspects but also exists in the maintenance
phase where additional conditions may appear. This is due to the fact that it is impos-
sible to capture all relevant dependencies and conditions from beginning. Additional
conditions are added as needed or detected in a piece-meal growth manner [14].

Domain engineering [I6] is a powerful means to detect and capture reoccurring and
thus reusable conditions on the requirements level for a certain domain. While modeling
the commonalities and differences of a domain, e.g. in a feature model [16], it is possible
to extend this model by additional semantic information or even derive logical formulae
directly from the model (the model already captures semantic relationships as feature
interdependencies).

Until now we regarded the conditions as (binary) formulae being true or false.
Though this is the first step for a mathematical foundation it does not yet reflect all
the facettes of the reality. An extended version model also considers values between 0
and 1, temporal and contextual information and dependencies.

4 Related Work

Complementary work may be found in [2I]. The Hoare triples (or pre- and post-
conditions as its realization mechanisms respectively) are employed to guarantee valid
aspect combinations during the combination process. While [21I] concentrates on the
checking mechanism and assumes given aspect combination rules without focusing on
the rules themselves the approach in this paper provides a version model to structure
the rules or conditions respectively. This is a step towards improved mathematical
support dealing with a complex set of rules and also towards their (partial) automatic
processing.

Related work may be found in all aspect-oriented and related approaches like
subject-oriented programming [I8], adaptive programming [22], adaptive plug & play
components [25], composition filters [7] or also transformation systems [I0].

Common to all these approaches is the goal to divide a system into smaller units in
a more natural way aiming at reducing the gap between code and reality and managing
the inherent complexity.

The proposed version model is orthogonal to these approaches as it provides a
means to describe the system units in a more abstract way on different levels of gran-
ularity (in the form of a construction instruction). With the definition of versions it
is possible to extract different views (i.e. versions) onto one unit. The most impor-
tant difference is that the version model integrates (even focuses on) consistency and
dependency management in a natural way.

With respect to composition validation further work may be found in [9]. In the
GenVoca model composition is described with type equations. A design rule checking

A Version Model for Aspect Dependency Management 7

mechanism detects illegal combinations. GenVoca is a powerful layered model and thus
mainly layered composition is considered.

Prior work at Bell Laboratories and in [29] about versioning has influenced the
proposed version model approach.

Generative programming [16] is another related field which may augment the ver-
sion model. The version notation may serve as an input for generators. Especially
domain engineering as one part of the generative programming approach is, vice-versa,
a means to detect, collect and describe semantic conditions. Feature models may be an
important technique in this context.

Requirements engineering methods in general bear a potential to detect and ex-

plore semantic knowledge which is needed in the version model and captured in the
conditions.
Also, AI technologies like expert systems may be used. [I7] describes a way to use
expert systems to support reuse of object-oriented frameworks by means of explicitly
encoded design knowledge and user interaction. Aspect composition conditions are one
type of such semantic design knowledge.

An alternative approach using logic to describe aspect dependencies may be found
in [I11.

University of Twente currently conducts research on fuzzy quantification of domain
knowledge which is a promising complement to the presented work [8].

5 Summary and Conclusion

The version model proposed in this paper allows both, to describe the internal structure
of an aspect and to define valid clusters of aspects. Using binary logical formulae for
that purpose provides, moreover, a mathematical foundation to prove correctness of
composition. This opens the field of logic and all its algorithms.

An extended version model also considers condition values in the range from 0 to
1. Semantic conditions may have a value in a range of discrete or analogue values.
Currently, further research is going on in this area together with University of Twente
in the context of the European project EASYCOMP [4].

References

1. AspectJ - Aspectj-Oriented Programming (AOP) for Java. http://www.aspectj.org,
2001. [

2. COMPOST Homepage. http://i44w3.info.uni-karlsruhe.de/~compost/, 2001. [4]

3. HyperJ: another alphaWorks technology. http://www.alphaworks.ibm/tech/hyperj,
2001. [

4. IST Project 1999-14191 EASYCOMP. http://www.easycomp.org, 2001. [I7

5. RCE, VRCE, BDE; RCE: the Revision Control Engine.
http://wwwipd.ira.uka.de/"RCE/, 2001. [I2

6. Virtual Virtual Machines. http://www-sor.inria.fr/projects/vvm/, 2001. [I

7. M. Aksit. Composition and Separation of Concerns in the Object-Oriented Model.
ACM Computing Surveys, 28(4), December 1996.

8. Tekinerdogan B. Design and Experimentation of a Fuzzy Logic Controller for
Evaluating Domain Knowledge. In Proceedings of Second International Workshop
on Softcomputing Applied to Software Engineering (SCASE), 2001. [Q

78

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Elke Pulvermiiller et al.

D. Batory and B.J. Geraci. Composition Validation and Subjectivity in GenVoca
Generators. In IEEE Transactions on Software Engineering, pages 67 — 82, 1997.
[76]

I. Baxter. Design Maintenance Systems. Communications of the ACM, 35(4):73 —
89, April 1992. [T [7q

J. Brichau. Declarative Composable Aspects. In Proceedings of Workshop on
Advanced Separation of Concerns, OOPSLA, 2000. [

M. Calder and E. Magill. Proceedings of Sixth International Workshop on Feature
Interactions in Telecommunications and Software Systems. I0S Press, 2000. [71]
R. Conradi and B. Westfechtel. Version Models for Software Configuration Man-
agement. ACM Computing Surveys, 30(2):232 — 282, 1998.

J.O. Coplien. Re-evaluating the Architectural Metaphor: Towards Piecemeal
Growth. Guest editor introduction to IEEE Software Special Issue. IEEE Soft-
ware Special Issue on Architecture Design, 16(5):40 — 44, September 1999.

K. Czarnecki and U.W. Eisenecker. Synthesizing Objects. In Proceedings of
ECOOP’99, European Conference on Object-Oriented Programming, LNCS 1628,
pages 18 — 42. Springer-Verlag, June 1999. [Z4

K. Czarnecki and U.W. Eisenecker. Generative Programming - Methods, Tools,
and Applications. Addison-Wesley, 2000. [

W.D. De Meuter, M. D’Hondt, S. Goderis, and T. D’Hondt. Reasoning with
Design Knowledge for Interactively Supporting Framework Reuse. In SCASE.
http://progwww.vub.ac.be/Research/
ResearchPublicationsDetail2.asp?paperID=81, February 2001. [74

Ossher H. and P. Tarr. Using Subject-Oriented Programming to overcome common
Problems in Object-Oriented Software Development/Evolution. In Proceedings of
the 1999 International Conference on Software Engineering, pages 687 — 688, May
1999. [76l

IRISA/IFSIC. Workshop on Aspect Oriented Programming, co-located
with OCM, Objets, Composants et Modeles. Rennes, France, May 2001.
http://www.irisa.fr/coo/ OCM2001 /program AOP.htm. [0 [7T]

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In LNCS 1241, ECOOP. Springer-
Verlag, June 1997. [0, [(2

H. Klaeren, E. Pulvermiiller, A. Rashid, and A. Speck. Aspect Composition ap-
plying the Design by Contract Principle. In Proceedings of the GCSE’00, Second
International Symposium on Generative and Component-Based Software Engineer-
ing, LNCS, Erfurt, Germany, September 2000. Springer. to appear. [75] [T6]
K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, 1996.

E. Lippe and G. Florijn. Implementation Techniques for Integral Version Man-
agement. In Proceedings of ECOOP’91, European Conference on Object-Oriented
Programming, LNCS 512. Springer, 1991.

A. Ludwig and D. Heuzeroth. Metaprogramming in the Large. In Proceedings
of the GCSE’00, Second International Symposium on Generative and Component-
Based Software Engineering, LNCS, Erfurt, Germany, September 2000. Springer.
to appear. [

M. Mezini and K.J. Lieberherr. Adaptive Plug-and-Play Components for Evolu-
tionary Software Development. In ACM SIGPLAN notices, volume 33, October
1998.

D.L. Parnas. On The Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053 — 1058, December 1972. [0

27

28.

29.

30.

31.

32.

A Version Model for Aspect Dependency Management 79

E. Pulvermiiller, H. Klaeren, and A. Speck. Aspects in Distributed Environments.
In K. Czarnecki and U. W. Eisenecker, editors, Proceedings of the GCSE’99, First
International Symposium on Generative and Component-Based Software Engineer-
ing, LNCS 1799, Erfurt, Germany, September 2000. Springer. [1]

E. Pulvermiiller, A. Speck, M. D’Hondt, W.D. De Meuter, and J.O.
Coplien. Workshop on Feature Interaction in Composed Systems,
ECOOP 2001. Budapest, Hungary, June 2001. http://i44w3.info.uni-
karlsruhe.de/ pulvermu/workshops/ecoop2001/. To be held.

M.J. Rochkind. The Source Code Control System. IEEE Transactions on Software
Engineering, SE-1(4):364 — 370, December 1975. [77]

A. Speck, E. Pulvermiiller, and M. Mezini. Reusability of Concerns. In C. V. Lopes,
L. Bergmans, M. D’Hondt, and P. Tarr, editors, Proceedings of the Aspects and
Dimensions of Concerns Workshop, ECOOP 2000, Sophia Antipolis and Cannes,
France, June 2000. [T

P. Tarr, L. Bergmans, M. Griss, and H. Ossher. @ Workshop on Advanced
Separation of Concerns, OOPSLA 2000. Minneapolis, USA, October 2000.
http://trese.cs.utwente.nl/Workshops/OOPSLA2000/. [Z0l

P. Tarr, M. D’Hondt, L. Bergmans, and C.V. Lopes. Workshop on Aspects and
Dimensions of Concerns: Requirements on, and Challenge Problems for, Advanced
Separation of Concerns, ECOOP 2000. In J. Malenfant, S. Moisan, and A. Moreira,
editors, ECOOP 2000 Workshop Reader, LNCS 1964, page 203 ff., Sophia Antipolis
and Cannes, France, June 2000.

An Object Model for General-Purpose Aspect
Languages

Stefan Hanenberg, Boris Bachmendo, Rainer Unland

Institute for Computer Science

University of Essen, D - 45117 Essen
{shanenbe, bachmendo, unlandR}@cs.uni-essen.de

Abstract. Aspect-Oriented Programming on the one hand supports a separate
treatment of different concerns in software development. On the other hand it
provides "weaving" technologies for knitting together such individual concerns
in software systems. Since the aspect-oriented approach is an extension of the
classical OO-paradigm it requires an enhancement of well-known language
constructs on the meta level. Although some general-purpose aspect languages
(GPAL) are available in the meantime, no commonly accepted object model
has yet been proposed. Consequently a common terminology is still not avail-
able what substantially hinders the spread of good and useful concepts. This
paper proposes an object model, which represents the foundation of the GPAL
Sally. We compare our model in respect to Aspect] which is by far the most
popular and well-established aspect language and, therefore used by a wide
community.

1 Introduction

The development of complex software systems requires to consider and individu-
ally treat multiple concerns and their relationships. Examples of concerns are not only
the functionality of a system but also non-functional issues such as failure handling,
communication, coordination strategies, memory reference locality, etc. (cf. [7]).

Object-oriented programming (OOP) technologies provide for issues like separa-
tion of concerns mechanisms like delegation and inheritance. However, these tech-
niques are inadequate to handle concerns whose behavior crosscuts the program
structure - concerns that require the programmer to explicitly insert fragments of code
into the primary application functionality. This produces tangled code and, conse-
quently, software systems that are difficult to understand and to maintain.

Aspect-Oriented Programming (AOP, [9]) has been emerging as a technology for
expressing multiple concerns in software development, along with "weaving" tech-
nologies for knitting together different concerns in software systems. This is mainly
achieved by handling the tangled-code phenomenon which is a result of the so-called
tyranny of dominant decomposition.

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 80-91, 2001.
© Springer-Verlag Berlin Heidelberg 2001

An Object Model for General-Purpose Aspect Languages 81

In the meantime several general-purpose aspect languages (GPAL) are available.
Nevertheless, no commonly accepted object model has yet been proposed. This cur-
rently leads to a lack of a common terminology and decreases the identification of
common concepts in GPALs. This paper proposes an object model which forms the
backbone of the GPAL Sally.

Aspect-orientation has mainly been influenced by Aspect] [8] which has been de-
veloped at the Xerox Palo Alto Research Center. It is by far the most popular and
best-established aspect language and, therefore, is widely used. For this reason we
will introduce our model and compare it to Aspect].

The remainder of this paper is structured as follows. Section 2 introduces the basic
concepts of aspect languages. Section 3 discusses the model of Aspect] and identifies
main weaknesses. Section 4 discusses the proposed object model and introduces our
GPAL Sally. Section 5 compares our approach to related work. Finally, section 6,
summarizes and concludes this paper.

2 Motivation

The core elements of object-oriented approaches are objects, classes and inheri-
tance (cf. [13]). Classes are templates from which objects can be deduced. Moreover,
they define interfaces for their objects and encapsulate, respectively hide their imple-
mentations as well as their data structures. Objects collaborate by sending messages
to each other. Every message sent to a certain object has to match a corresponding
signature of its underlying class. Classes consist of attributes and methods. Inheri-
tance is a mechanism for deriving new class definitions from existing ones, which
means that an existing class is taken as a basis and adapted to the new needs by add-
ing new and/or overriding existing attributes and methods; i.e. inheritance means to
extend existing classes to achieve new ones that better fit to the underlying needs.
Inheritance is discussed in some detail in [12].

Object-oriented software development heavily relies on inheritance. Whenever
utilizing instances of existing classes cannot solve a problem at hand an appropriate
class has to be extended in a way that it meets the expected requirements. Changing
the behavior of objects means to extend a class and to override the implementation of
one or more methods. However, since the implementation of a method is encapsu-
lated, it is not possible to replace only a part of it. Instead, a new class has to be de-
rived from the existing one. Then a new one that fits the needs at hand can override
the original method. Well-known design patterns like template method or strategy (cf.
[5]) can be used to realize varied behavior. However, using these patterns assumes
that the software developer already knows which part of the implementation is to be
modified. Such a fortunate situation is not given if some software has to be extended
by certain aspects that were not yet treated in the development process.

In summary one can say, that object-orientation is a very crude technique when
behavior has to be adapted to new demands.

Aspect-Oriented Programming permits to treat different aspects or concerns sepa-
rately. Typical concerns of this kind are concurrency or persistency (cf. [7]). Adding

82 Stefan Hanenberg et al.

a certain new aspect to existing code usually means to add crosscutting code. In order
to overcome the rigid and inflexible approach of object-oriented technology towards
the change of behavior general-purpose aspect languages like AspectJ [8] or Sally
[11] introduced an additional extension point: interaction.

> o
[

. methodA() |

methodB ()
ZS |
—

T L
| \ '_I—
| Aspect-Oriented |

Extension

Fig. 1. Extending interactions using AOP

Figure 1 shows how an instance of A in methodA () interacts with other objects.
The object-oriented approach would just permit to reuse the method-implementation
"as is". With the aspect-oriented approach the interaction between A and B can be
adapted by adding some code to this specific interaction. Whenever the specified
interaction happens this additional code is executed. For this purpose the participants
of the interaction and the code which is supposed to be executed need to be specified.
In this context we use the term aspectual invocation, because the code is executed
although it is not directly embedded in A. Such code, that can be used for an arbitrary
number of different interactions, is called crosscutting code.

The intention of the here proposed model is to give a clear understanding of the
ingredients a GPAL should consist of to support the extension of interactions. Thereto
we will first discuss Aspect] in the next section and afterward suggest an alternative
model the GPAL Sally is based on.

3 Aspect]

Aspect] [8] from the Xerox Palo Alto Research Center is currently the most popu-
lar GPAL. In this section we will shortly introduce the model Aspect] and discuss its
weaknesses. We will introduce the model "bottom-up" what means, that we show
how interaction can be specified before we explain what aspects consist of.

3.1 Join Points

[8] introduces join points as "principled points in the execution of the program"
which means that they refer to situations where certain interactions take place. As-
pect] provides different kinds of join points, like method call join points or method
call reception join points. They are used for expressing the actions “calling a method”
or “receiving a method call”.

An Object Model for General-Purpose Aspect Languages 83

For example, receptions (void methodB()) is a valid join point in
Aspect]. It specifies the actions of receiving a method call methodB (). This join
point can be used in combination with the join point instanceof (B). This
combination describes the action "an instance of B receives a method call
methodB () ".

In this example a combination of two join points is needed in order to specify the
receiver of the method call. However, it is not possible to specify the caller. Further-
more, we need to know how join points can be combined and what combinations are
valid.

The complexity of declaring and combining join points this way is immense. Fur-
thermore, it augments the number of keywords of the language substantially. In As-
pect] each join point only specifies one part of an interaction and therefore needs to
be combined with other join points in order to describe a complete interaction.

3.2 Pointcuts

Pointcuts are named combinations of join points. In Aspect] these combinations
need to be defined as boolean expressions. For example, a valid pointcut definition is:

pointcut callB(): instanceof (B) &&
receptions (void methodB())

This pointcut is named callB and describes, that an instance of class B receives a
message methodB (). A pointcut is activated whenever the execution of a program
reaches a point that matches this specified pointcut.

While this pointcut definition just permits to specify the receiver of an interaction,
other combinations allow to specify the caller. Usually Aspect] does not handle caller
and receiver at the same time. But since an aspect logically belongs to both partici-
pants of an interaction there is often a need to treat both participants at the same time.
By regarding only callers or receivers Aspect] is very similar to the approach of com-
position filters [1].

Additionally there is the problem to determine whether a pointcut is valid. For ex-
ample a pointcut like (instanceof (B) && instanceof (A)) will never be
valid, if none of those classes extends the other.

3.3 Advice

An advice specifies the code that is to be executed whenever a certain interaction
occurs. Therefore, it represents the crosscutting code because it may be executed at
several execution points in the program.

The declaration of an advice needs to specify at what pointcuts it is meant to be
executed, i.e. every advice refers to one or more pointcuts. Additionally, it must spec-
ify at what point in time it is supposed to be executed: an advice may either be exe-
cuted before or after a certain interaction happens or may even replace it.

In Aspect] pointcut methods are defined as follows:

84 Stefan Hanenberg et al.

before () : aPointcut() {...do something...}

This pointcut method is executed before the pointcut aPointcut is activated (the
modifier before () is responsible for deciding, at which point of the interaction the
method should be invoked).

Aspect] does not permit to name advices. We regard this as a disadvantage because
an advice is a special method which is invoked whenever a pointcut is activated. If
advices cannot be named and, therefore, cannot be treated as special methods then
pointcuts cannot have advices as interaction participants.

3.4 Aspects

In general-purpose aspect languages aspects are constructs that represent those
fragments of code which crosscut several decomposition units or modules. [4] defines
aspects as follows: "A model is an aspect of another model if it crosscuts its struc-
ture".

Lieberherr et al. call this in [10] the aspectual paradoxon: the nature of an aspect is
that it cannot be decomposed into separate modules. Although this argument seems to
be obvious, it neglects one important thing: aspects cannot be decomposed as long as
there is no mechanism like aspectual invocation.

On the implementation level aspects are constructs which consist of attributes,
methods, pointcuts, and advices. Join points are not part of the aspect in Aspect],
however, part of the pointcut.

Aspect] distinguishes between classes and aspects. Classes describe components
(the term component is used in [9] to differentiate units of a system's functional de-
composition from aspects) and aspects are statically woven into them (cf. [2]).

Distinguishing classes and aspects has some severe disadvantages: a developer al-
ways has to be aware of two different views on his system: the object-oriented view
and the aspect-oriented view. While the first can be extended by aspects, the second
can hardly be adapted to new needs, e.g. advices cannot be extended.

Another critical point is the static weaving in Aspect]. After the weaving process
the original information like pointcuts and advices is lost. So it is not possible to ana-
lyze a compiled aspect in order to find out what parts of the object-oriented system
are influenced by this particular aspect.

Extending Aspects

Classes and aspects are very similar in Aspect], e.g. it is allows to extend abstract
aspects via inheritance. On the other hand it is neither allowed, that an aspect extends
a class via inheritance, nor to extend non-abstract aspects via inheritance. Extending a
concrete aspect is also not allows. In this way the instructions for extending classes
and aspects are quite complex.

An Object Model for General-Purpose Aspect Languages 85

3.5 Creating Aspect Instances

In Aspect] instantiating aspects is realized differently from the object-oriented ap-
proach where developers have to create instances explicitly. Instead, the aspect decla-
ration specifies how aspect instances are created during run-time. For example, the
aspect declaration

aspect X of eachobject (instanceof (B)) {
pointcut callB() : instanceof (B) &&
receptions (void methodB())
before():callB () {...}}

specifies, that for every instance of B a new instance of X is created. In fact, the re-
sult of this declaration consists of two steps: first, defining, at what time a new aspect
instance will arise, and second, to which object this instance will be bound to.

The first step can be handled by the mechanism of aspectual extension, because a
new aspect instance will be created whenever the interaction “someone calls a con-
structor of B” occurs.

The problem of the second step is that it directly influences the semantic of the as-
pect. In the example above an instance of aspect X is created for each instance of B.
As a result instanceof (B) in pointcut callB () just refers to that instance. If
the aspect does not contain such an eachobject-declaration instanceof (B)
would refer to every instance of B.

While the first step is a redundant language feature, because it can be realized via
aspectual extension, the second step leads to some confusion: the meaning of point-
cuts defined in an abstract aspect without an eachobject-clause is changed if sub-
aspects introduce such a clause.

In summary we can say, that this kind of creating aspect instances unnecessarily
increases the complexity of the language.

All the above-mentioned weaknesses reduce the flexibility of the aspect-oriented
approach and reduce the possibility to maintain aspect-oriented systems.

4 Object Model of Sally

The following model forms the foundation for our GPAL Sally. The model will be
introduced "bottom-up". The terms used are mainly based on Aspect].

4.1 Join Points

Our point of view differs from the Aspect] join point model. The intention is to
make the join point declaration as easy as possible without the need for operations to
combine them. A join point based on our model is a complete specification of a par-
ticipant in an interaction. Provided that corresponding get () and set ()-methods

86

Stefan Hanenberg et al.

exist for every attribute a join point is always a method belonging to a certain class.
So a join point specification is a 4-tuple consisting of the following elements:

class identifier

return type identifier
method identifier and
parameter type identifiers.

A valid join point declaration in Sally is:

joinpoint j1 {B, void, methodB, null}.

This join point declaration differs from the approach in Aspect] in several ways:

A join point describes just one participant of an interaction.

A join point describes the participant entirely; its description includes informa-
tion like the class identifier, the return type identifier, the method name, and the
parameter type identifiers.

A join point is described on a neutral level; i.e. it contains no information about
the context (as a caller or receiver of a message) in which it may be used.

A join point is always named.

This model offers a number of essential advantages in comparison to Aspect]. The
usage of join points is much easier, because neither additional keywords are needed
nor operations to combine join points, because Sally does not distinguish between
different types of join points. Hence a join point is named it can be used for different
interactions and as caller or receiver.

extends

B
Member <§L—————————}

Fleld ? 4 ——
ﬂx caller 1 | [‘

Method Pointcut | JoinPoint

1
* receiver 4 t ParamTypelId
{ordered}
PMModifier n MethodId

|PointcutMethod I

Fig. 2.: GPAL Object Model (extract)

While join points just specify one participant in an interaction, the following sec-
tion describes how to specify the entire interaction.

An Object Model for General-Purpose Aspect Languages 87

4.2 Pointcuts

For specifying interactions it is sufficient to define a pointcut as a tuple consisting
of two join points as shown in figure 2: one join point for the caller and one for the
receiver.

For example, specifying a pointcut for the interaction between methodAa () of an
instance of A and methodB () of an instance of B can be done in Sally as follows:

joinpoint ¢ {A, void, methodA, nullj};

joinpoint r {B, wvoid, methodB, nullj};
pointcut pl {c, r};

This defines two join points ¢ and r, and a pointcut p1, which defines ¢ as the
caller and r as the receiver. Although there is an additional effort to define each
named join point the advantage of this approach is that every join point can be used in
an arbitrary number of pointcuts without the need to redefine it.

4.3 Advices / Pointcut Methods

We argued in section 3.3 that in Aspect] advices are not named and can therefore
not be used as extension points for further aspects. Furthermore advices are lost after
weaving.

To avoid such problems advices in Sally are special methods and therefore are
called pointcut methods. On the meta level it means that the metaclass Pointcut -
Method extends the metaclass Method (fig. 2). So, the Sally definition of the point-
cut method corresponding to the advice in section 3.2 is:

public void beforeAPointcut () before aPointcut
...do something...

The pointcut method modifier (keyword "before" in our example) is an attribute
of the relationship between pointcut methods and pointcuts (fig. 2) and declares at
what point in time in relation to the interaction a pointcut method is invoked. Because
a pointcut method is a special method, it can be addressed by join points and, in this
way, can be extended in an aspect-oriented way.

4.4 Aspects

On the implementation level aspects are constructs which consist (in Sally) of at-
tributes, methods, join points, pointcuts, and pointcut methods (fig. 2).

Based on that model it is possible to distinguish between classes and aspects. An
aspect has in addition to attributes and methods join points, pointcuts, and pointcut
methods. So, the metaclass Aspect is supposed to extend the metaclass Class. The
question arises whether both metaclasses are to be considered in a general-purpose
aspect language.

In 3.4 we argued that the distinction between classes and aspects leads to the prob-
lem that the developer always has to be aware of the object-oriented and the aspect-

88 Stefan Hanenberg et al.

oriented view on the system. This requires to cleanly separate between aspects and
classes in the entire development process. The main reason for it is, that classes and
aspects in Aspect] are not extensible in the same way. On the other hand the benefit
of aspect-oriented programming is that this approach allows to adapt existing sys-
tems. Aspect] does not follow this aim consequently, because concrete aspects cannot
be extended using inheritance and its advices cannot be used as join points. [6] dis-
cusses the problem of adapting an aspect's behavior in more detail.

To support a higher degree of flexibility Sally does not differentiate between
classes and aspects. This is possible since members of the construct Class (at-
tribute, method) are a subset of the members of the construct Aspect (at-
tribute, method, join point, pointcut, pointcut method). That
means the classification of objects is realized using aspects. A traditional object-
oriented model still remains the same, because it consists of aspects which have no
join points, pointcuts and pointcut methods.

Extending Aspects

If aspect languages do not support classes any longer it has to be defined how as-
pects can be extended to cover inheritance between classes as well.

As long as aspects only consist of attributes and methods they are equivalent to a
normal object-oriented class. In this case extending an aspect means, that the sub-
aspect has the same methods and attributes as its parent. The question is, how the
aspect-oriented elements behave with respect to inheritance.

In Aspect] inheritance between aspects behaves similar to object-oriented inheri-
tance: join points, pointcuts, and pointcut methods defined in a super-aspect are also
available on the level of the sub-aspects. It is also possible to define abstract aspects
that may have abstract pointcuts. But as discussed above extending aspects is re-
stricted to abstract aspects.

In Sally inheritance between aspects is similar to inheritance in Aspect]: a sub-
aspect inherits all elements defined in its parent. It also allows to define abstract join
points.

abstract aspect X {
joinpoint j1 {A, void, methodA, null};
abstract joinpoint j2 {, void, methodB, null};
pointcut pl {j1, j2}; ..

abstract aspect Y extends X {

joinpoint j2 {B,,,,};}

In the example above join point j2 is abstract because it leaves the definition of
the aspect identifier to its sub-aspect. Pointcut methods relating to pointcut p1 will
not be invoked as long as j 2 is not concrete.

The aspect Y is a sub-aspect of X since it defines the aspect identifier as B. So, the
pointcut pl activated whenever an instance of B receives a message methodB ()
from a method methodA () from an instance of A.

Overriding methods and pointcut methods in an aspect is identical to the mecha-
nism in Java. A method (or pointcut method) overrides another one in its super-
aspect, if it has an identical signature.

An Object Model for General-Purpose Aspect Languages 89

4.5 Creating Aspect Instances

In 3.5 we argued, that the way aspect instantiation is realized in aspects is a redun-
dant language property and unnecessarily increased the complexity of the language.
Furthermore this declaration is responsible for the complex definition of inheritance
in Aspect].

Our model does not define how aspect instances are created, because we do not
differentiate between aspects and classes. Therefore the developer needs to define at
what time aspect instances should arise. After its creation an aspect instance can be
bound to other aspects (or aspect instances) and, in that way, can react on their inter-
actions. Binding a certain aspect instance to another is achieved by a common inter-
face which is implemented on the root level.

abstract aspect X {
joinpoint 3 {*, *, *, *};
joinpoint j4 {B, B, new, *};
joinpoint jl1 {A, void, methodA, nully};
joinpoint j2 {B, void, methodB, null};
pointcut pl {j1, j2}; pointcut p2 {33,
public static void createXInstances()

receiver.return.register (new X());}

public void aPCMethod() before pl {...}}

}i

j4
after p2 {

The code example above creates an instance of X every time a new instance of B is
created. This is achieved by defining the pointcut pc2 which is activated whenever
some caller sends a message to the constructor of B with arbitrary arguments (the
wildcard * means “some”, the method identifier new identifies the constructor). Then
the static pointcut method createXInstances () is executed, which binds a new
instance of X to the new instance of B. Within every pointcut method the special ob-
ject receiver is available which itself has the variable return, which refers to
the returning object of an interaction. The method register () is part of the root
aspect and, therefore, is available in every aspect in Sally.

After this the pointcut method aPCMethod () of the newly created instance of X is
executed whenever an instance of A sends in methodAa () the message methodB ()
to the instance of B the new X is bound to.

5 Related Work

Our view on AOP was mainly influenced by Aspect]. As discussed above our
model differs in some ways from Aspect]: the join point and pointcut model in As-
pect] allows to react to incoming or outgoing messages, i.e. it is very similar to the
composition filters approach [1]. Our approach explicitly supports a two-way interac-
tion in which the caller as well as the receiver can be specified. Furthermore we argue
that pointcut methods are special kinds of methods and aspects are special classes.

On the implementation level the main difference between Sally and Aspect] is the
process of weaving. In Sally weaving is realized in a different way than discussed in

90 Stefan Hanenberg et al.

[2]: it is neither pure static nor pure dynamic. Static weaving abandons the structure
of aspects by inserting the aspect code into the original code. Because of that it is not
possible to apply reflection to woven aspects. Also, pure dynamic weaving cannot be
achieved as long as static pointcut methods exist which need to relate aspects to each
other on the aspect level and not on the instance level. In Sally an aspect that contains
one or more pointcuts is registered at all receivers of the specified interaction at com-
pile time using some trivial byte code transformation. Because of this Sally, in con-
trast to Aspect], does not need to transform source code every time a new aspect is
introduced. Instances of aspects have to be assigned at run-time. So the structure of
aspects is preserved in Sally and allows to analyze aspects and aspect instances during
run-time using a provided reflection APIL.

weavedAspectInstances 1
I Vi
| sally.lang.Object IlE sally.core.Moderator I
4& * weavedAspects

| sally.lang.Aspect I

Fig. 3.: sally.lang.Object

There are some similarities between Sally and the Aspect Moderator Framework
[3]: in Sally every aspect inherits from a certain class (sally.lang.Object)
which refers to a certain moderator-object (fig. 3). This moderator is responsible for
activating pointcuts of registered aspects. In contrast to [3] we think that the modera-
tor should be embedded in the GPAL instead of being a construct at the design time
of a software system. Using the aspect moderator framework implies, that the devel-
oper has to be aware of certain aspects, that may change the systems behavior in the
future. But as explained in the beginning this is usually not the case.

6 Conclusion and Further Work

We proposed an object model for general-purpose aspect languages and proved its
applicability and usefulness by taking this model as a basis for the implementation of
our aspect language Sally. The object model helps the developers to get a common
understanding of what elements an aspect language should consist of and how AOP
extends the object-oriented approach. We discussed the mechanism of aspectual in-
vocation and explained, how this can be achieved using the AOP-specific elements.

We critically analyzed the model underlying Aspect]. It turned out that is suffers
from a number of severe flaws with respect to reuse and extension of aspects. More-
over, Aspect] requires to treat the object-oriented and the aspect-oriented view as two
different views whose relationship have to be coordinated very carefully during the
software development process. Our model eliminates these flaws and treats both per-
spectives uniformly in one view.

An Object Model for General-Purpose Aspect Languages 91

The proposed model can be directly used to support reflective properties of a
GPAL. To achieve this we abandoned the use of static weaving.

Currently we investigate how the mechanism of synchronizing different aspects
can be applied to our model and implemented in Sally.

References

1. Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa, A.. Abstracting Object-
Interactions Using Composition-Filters. In: object-based distributed processing, R. Guer-
raoui, O. Nierstrasz and M. Riveill (Eds.), LNCS, Springer-Verlag, (1993) 152-184,

2. Bollert, K.: On Weaving Aspects. Position paper at the ECOOP '99 Workshop on Aspect-
Oriented Programming, (1999)

3. Constantinides, C., Bader, A., Elrad, T., Netinant, P., Fayad, M.: Designing an Aspect-
Oriented Framework in an Object-Oriented Environment. ACM Computing Surveys, Vol-
ume 32, No. les, (2000)

4. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Application.
Addison-Wesley, (2000)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, (1995)

6. Hanenberg, S., Unland, R.: Concerning AOP and Inheritance. In: Mehner, K., Mezini, M.,
Pulvermiiller, E., Speck, A. (Eds.): Aspektorientierung - Workshop der GI-Fachgruppe
2.1.9 Objektorientierte Software-Entwicklung. Paderborn, 3./4. Mai 2001, Technischer Be-
richt der Universitit Paderborn tr-ri-01-223. (2001)

7. Hiirsch, W., Lopes, C.: Separation of Concerns. Northeastern University, Technical Report,
no. NU-CCS-95-03, (1995)

8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.. An Overview
of Aspect]. Appears in ECOOP 2001 (2001)

9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwing, J..
Aspect-Oriented Programming. Proceedings of ECOOP '97, LNCS 1241, Springer-Verlag,
(1997) 220-242

10. Lieberherr, K., Lorenz, D., Mezini M.: Programming with Aspectual Components, Techni-
cal Report, NU-CCS-99-01, Northeastern University, Boston (1999)

11. Sally: A General-Purpose Aspect Language, http://www.cs.uni-
essen.de/dawis/research/aop/sally/, January 2001

12. Taivalsaari, A.: On the Notion of Inheritance. In: ACM Computing Surveys, Vol. 28, No.
3, (1996) 439-479

13. Wegner, P.: Dimensions of object-based language design. In: N. Meyrowitz (Ed.), Proceed-
ings of OOPSLA '87, SIGPLAN Notices 22, 12, (1987) 168-182

Generic Visitor Framework
Computing Statistical Estimators

Jean-Daniel Nicolet

403, Route de Matailly, F 74520 Valleiry, France
web site: www.linkvest.com/jdn/index.htm
email: jean-daniel.nicolet@linkvest.com

Abstract. This paper presents a concrete application of template meta-
programming techniques to provide a generic, efficient and type-safe
implementation of statistical estimator computation using visitors.

Introduction

This paper shows a concrete use of template meta-programming techniques to deal
with a problem often encountered when building financial or other statistically
oriented reports. The problem itself is thus not new. The innovative part is the
technique used to solve it both in a generic and type-safe way. Meta-programming
ways that are now popular among the community are put to good use to achieve both
flexibility and efficiency.

The chosen concept (recursive template inheritance) has been fully modeled and
documented in UMLY}| thus allowing the reader to understand the numerous pieces
involved in the puzzle’s construction and their relations. The corresponding code
skeleton has been generated automatically with the help of the modeling tool Rational
Rose®E] The resulting implementation is very efficient and small.

Problem Description

The handled problem is commonly arising when dealing with financial data in
order to compute statistically oriented reports. Statistics is viewed here in a broad
sense to include several common operations one may apply to a data series to obtain
some analytical result summarizing a series’ properties. The involved operations
correspond roughly to the summarizing operators found in the SQL database language
(count, sum, average, etc.).

These standard SQL operations may be extended with additional statistical
operations we will explain here in more details, like standard deviation, skewness and
excess, which constitute the core of our framework, and were also important to show
the way toward a generic solution.

! Unified Modeling Language, see [OMG 00]
2 http://www.rational.con]

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 92-105, 2001.
© Springer-Verlag Berlin Heidelberg 2001

http://www.rational.com/

Generic Visitor Framework Computing Statistical Estimators 93

All these statistical operations are based on so-called statistical moments
mathematically defined as follows. For a discrete random variable &, the k" moment at
location c is given by:

mE =) =, —c) P N

i=1

The x; are the data values and the P, their probability of occurrence. The first
interesting moment is for ¢ = 0 and k = 1. It is called “mean” and corresponds to the
usual average of a data series. The Greek letter u designs it. Other interesting
moments are obtained for higher exponents (the k value) and for ¢ being precisely
equal to the mean. One speaks then of centered moments (centered around the mean).
The 2" order moment is called the variance and is a measure of the scattering of the
data around the mean. The third moment allows for computing the so-called
skewness, which gives an idea of the asymmetry of the data around the mean, and the
fourth moment leads to the excess, measuring the narrowness of the data around the
mean.

Mathematical properties of these moments that we don’t want to explain further
allow to compute them in one pass when receiving the data as input, thus avoiding a
first pass on the data to compute the mean (the moment’s center), followed by a
second pass to compute the corresponding power sum. This is especially important
when dealing with big data sets. Moreover, doing all computations at once is usually
more efficient.

The computation of, say, the excess implies not only computing the 4" moment,
but also all the smaller order ones. Said otherwise: if you have invested the effort to
be able to compute the excess, then all other interesting estimators come essentially
for free. This recursive property is at the core of our solution.

The data item type may vary, but it must support the fundamental arithmetic
properties. The other degree of freedom is constituted by the kind of statistical
operation to apply.

The Visitor Pattern

The above situation (double polymorphy) is usually best handled with the help of the
visitor pattern The main hierarchy contains the classes of the objects to
manipulate and the operations are reified into visitor classes applying to the data
objects’ classes. The computation of an operation on a data series may then be
implemented by the following steps:

1. Instantiate and initialize a visitor object according to the requested operation.
2. Iterate over the data series
3. Apply the visitor to each data item.
4. Extract the final result from the visitor object

This pattern suffers from some well-known limitations. If it is relatively easy to
add a new visitor, the work involved is much bigger when adding a new kind of data
item, because the whole visitor hierarchy must then be extended. There are more

94 Jean-Daniel Nicolet

sophisticated variants, as described in that mitigate somehow these
inconveniences, but they are not completely eliminated.

In the financial world we are interested in, the situation leans precisely over the
bad side. It is much more common to add a new kind of data item than a new kind of
statistical operation. Instead of having a data item hierarchy, we’ll use static
polymorphism instead. This means concretely that we don’t impose hierarchical
constraints on the data items but rather templatize our visitors with the data item type.
Various data item types are rarely to never mixed in practice, so this decision is
perfectly acceptable. Let’s call this template parameter “T” and name it the
fundamental data type.

Just as for any template parameter, we must precise the behavioral properties we
expect from the actual types being substituted during template instantiation. They
must be default-constructible, assignable, equality-comparable and less-than-
comparable, as defined in the SGI standard template library documentationE] They
must also have fundamental arithmetic properties, described in the following table:

Table 1. Fundamental type arithmetic requirements

Name Example Post-condition
Construction from a number T t(3)
Default (;onstructor, shguld . Tt The sameas T t(0)
behave like a construction with 0
Arithmetic operation u o+ v; Convertible to T

These requirements are quite natural for types that should behave like numbers.
The second one is just a matter of comfort. The ability to build an object from a
(whole) number without additional information is required, because statistical
computation formulas need such multiplicative constants. Multiplicative constants
could be of a different class than the data item itself. A traits template parameter
bound to the fundamental type T would then be required. This would also imply
mixed arithmetical operators offering the appropriate combinations, but we ignore
these extensions in the rest of this document.

An Efficient Power Algorithm

The first sub-problem to solve is of mathematical nature. Computing statistical
moments implies first being able to compute integral powers of data items. Because
we plan to design a generic solution, we need a generic way of computing integral
powers efficiently. The corresponding meta-function has obviously two parameters:
our fundamental type T and the integral power exponent, called n, which we require
to be positive. Negative values could be handled too, but it is simpler to deal with that

3 see www.sgi.com/tech/stl/DefaultConstructible.html, www.sgi.com/tech/stl/Assignable.html,
www.../EqualityComparable.htm] and www.../LessThanComparable.html for more details

http://www.sgi.com/
http://www.sgi.com/
http://www.sgi.com/
http://www.sgi.com/

Generic Visitor Framework Computing Statistical Estimators 95

case elsewhere, as we will see. The best choice is to define a functor class,
implementing the power computation as function operator. This leads us to the
following UML class diagram:

The intermediate class appearing r—----
in this diagram, with the jArg 1
<<Place holder>> stereotype, is jResult J'
an artifact of UML to allow the exact .
specification of the template .
parameters in the inheritance relation. unary_function
It is also a way to make the parameter A
substitution apparent on the diagram. |
Its stereotype, as well as the absence
of colors is there to remind the reader

<<STL related template>>

<<Place holder>>

that it does not contribute to generate unary_function< T,T >
C++ code

The naive power implementation - _
would simply use a for loop to :_T 1
multiply the function argument x n I

e

n times by itself, but this is knowingly
far from optimal. For example, x* can
be computed by squaring x twice,

thus using only two multiplications | <<operator>> operator()(X: T): T
instead of three.

<< Generic programming template>>
UnrolledPower

Fig. 1. The unrolled power meta-function template

The optimum computation is still an open problem in general but there
exists a nearly optimal solution simple enough to implement it easily. It is based on
the binary decomposition of n. If we express this algorithm in its conventional form, it
looks as follows:

for(T v = x; n > 1U; n >>= 1)

v¥= v;
if (odd(n))
v*= X;

}

The above algorithm is not absolutely correct. The case n == 0 should be
handled specifically, but we ignore this detail here. When switching to template meta-
programming, we must recall that only n is constant. The T argument X is variable. It
actually corresponds to the data item we will extract from our data series. Hence, the
computation cannot be completely done at compile-time. The best we can hope for is
to use template meta-programming to unroll the loop and compute the additional
multiplication by x contained in the if clause based on the parity of n. Hence the
named “UnrolledPower” we have given to this template, to distinguish if from a
fully static version, where the x argument is also fixed.

The odd meta-function is simple to implement and belongs to every template meta-
programming toolkit, as follows:

96 Jean-Daniel Nicolet

Template< unsigned long n >
struct Odd

enum {IsTrue = bool(n & 0x1l), IsFalse = !IsTrue };

1

We are using a now classic (anonymous) enumeration type to force the compiler to
evaluate the boolean result at compile-time. Using a boolean inside an enumeration
value is also perfectly legal, because we have a guaranteed conversion to an integral
type and the enumeration construct must accommodate every integral type by
requirement of the C++ standard.

We now have all we need to implement the power meta-function. The for loop is
implemented with the help of a recursive template and a partial template
specialization to stop it, as follows:

template< typename T, unsigned int n >
struct UnrolledPower: public unary function< T, T >

T operator() (T x) const
{ return (0dd< n >::isTrue ? x : T(1)) *
sqgr (UnrolledPower< T, (n >> 1)

}i

template< typename T >
struct UnrolledPower< T, 0U > : public
unary function< T, T >

T operator() (T x) const
{ return T(1);
Vi

The sgr function used in the recursive expression is a helper mathematical
template function computing the square of its argument. One could have used another
recursive instance of the UnrolledPower template with a value of 2 for n, but this
would have made the expression less readable.

The if statement testing the oddity of n is replaced here by the classical ternary
? operator using an invocation of the Odd meta-function explained before. Note
that if n is even, we multiply by 1 instead of %, hence the need for the T’s constructor
accepting a simple constant as argument. One could argue that a multiplication by a
factor of 1 is not very optimal, and a tighter version could have been devised, but
again this would have made the whole expression much less understandable.

Moreover, such meta-functions are not devised to be used as-is. In order to obtain
efficient code, the most aggressive compiler’s optimization options must be turned on,
and the result is actually very effective: all templates, constructors, destructors,
recursion and function calls disappear. Only the series of multiplication and storage
operations remain.

As is usual with such template meta-functions, we declare the following
accompanying template function as syntactic sugar:

Generic Visitor Framework Computing Statistical Estimators 97

template< typename T, int n >
inline T Power(T value)
{ return n > 0 ? UnrolledPower< T, n >()(value)
T(1) /UnrolledPower< T, -n >()(value); }

This allows for two things: First, we may now express a computation whilst
dropping the constructor pair of parentheses, and second, negative power arguments
are now possible (the second template parameter is not unsigned anymore):

double y = Power< double, -9 >(x)

The above ideas are not new. They now belong to the classical paraphernalia in the
template meta-programming field. They were presented in |[[Vel]| (see also| [CzE 00]
for a systematic exposition).

The Summator Template

Now that we are equipped with a powerful(!) template, we can envision the next step.
The computation of statistical moments implies that we sum various powers of the
data items. So we need a kind of accumulator allowing this summation. The minimum
needed to achieve this is the following:
1. A variable of type T, holding the summation’s result and initialized properly (to 0
in the simplest case)
2. A function acting on the received data item to compute the value to accumulate
(our power function in the statistical estimator case)
3. The accumulation operation itself (usually the += operator)
The resulting pseudo-code would look like this:

Accumulate function(arg) to result;

If we go back to our original problem, our intention was actually broader than
computing just the statistical moments. We would like to also have visitors computing
the minimum and maximum of a given data series, but this requires another kind of
“accumulation”. Instead of the traditional operator += we need a kind of
Omin=[1 operator. This means that we need some parameterization on the
accumulate function too. The following template presents the retained approach.

As can be seen in the UML diagram below, we now have 3 template parameters.
Our fundamental type T, our data item functor F, and the accumulation operator O.
Moreover, the starting operand value must now be passed as constructor argument to
allow the special case when this value is different from the default. The template
name has become more general too, because this template may accomplish more than
a mere accumulation.

98 Jean-Daniel Nicolet

g]
jResult |

<<STL related template>>
unary_function
M\
1

<<Place holder>>
unary_function<T,void >

8 <<cdtor>> Transformator(functor : F = F(), opAssign : O = O(), startValue : T = T())
% <<Operator>> operator()(arg : const T&) : void

% <<Accessor>> getOperand() : const T&

Fig. 2. The transformator template

The accumulation operators we need are implemented as follows:

template< typename T >

struct PlusAssign : binary function< T, T, void >
void operator() (T& argl, const T& arg2) const

} { argl += arg2;

template< typename T >
struct MinAssign: binary function< T, T, void >

static const T startValue;
void operator() (T& argl, const T& arg2) const
{ if (arg2 < argl) argl = arg2; }
template< typename T > const T MinAssign< T >
::startValue = numeric limits< T >::max()

bl

The first template is the exact pendant of the standard “plus” functor
encapsulating the global addition operator. A point to notice it that the function
operator does not return its result as usual, but on the first argument instead, that must
be declared as a non-const reference to allow it.

The second template is our “min="" operator. To help later with the starting value
in the transformator template, we declare an embedded static constant that can be

T
, O
<< Generic programming template>> i F
Transformator -——-
B functor : F
[8% operator : O
B operand : T

Generic Visitor Framework Computing Statistical Estimators 99

used for this purpose. It is initialized here with the help of the standard template
numeric limits traits class, available for all built-in types. It should thus be
provided for the additional data item types we plan to use with our framework. Note
that we only need the “max” (for the MinAssign) and “min” values (for the
MaxAssign operator).

We are now able to express a special case of our transformator, by fixing its
accumulation operator to be the usual += operator, called an “Accumulator”

From a conceptual point of view, this accumulator could be seen as a kind of
partially specialized typedef, although there is no direct way to express this
concept in C++. One is forced to resort to one of the following constructs instead:
1. A template partial specialization.
2. Another descendant class, as we have done it here.
3. A typedef encapsulated within a template.

The minimum and maximum computation using the “min=" respectively “max="
accumulation operators will not be explained further in this abridged document.

The Resultor Class

We are now nearly ready for the most complicated step: the recursive computation
of the statistical moments. We want first go one step further in the specialization of
the accumulator class. After having fixed the accumulation operator, we’ll fix its
functor. As already explained before, we need to compute the cumulative sums of the
powers of the data items for which we want a given statistical moment. Our power
meta-function (UnrolledPower) will just do that.

The resulting specialization must itself be parameterized by the power exponent,
besides our now pervasive fundamental type T. We name that further specialization
NthPowerSummator. It may be viewed as a templatized t ypede £ (parameterized
on both T and n), for the same reasons as the Accumulator itself.

This time we chose to encapsulate a usual typedef within a template class, as
shown on the UML diagram on the next page. Note that the vertical dashed arrows
have actually two different meanings. The up-arrows are bounding relations (going
from a place-holder or a typedef to a template) whilst the down arrow is a simple
dependency relationship (the NthPowerSummator typedef makes use of the
UnrolledPower template class to instantiate the Accumulator).

We have taken advantage of our typedef encapsulating SummatorHolder
being a first class(!) citizen to add a few extras. It derives from the
unary function standard template (this feature is not directly used here, but it is
always a good idea to be compliant with some pre-defined standard). Thus, the main
operation we are interested in (that will later be the core of our visit operation) is
implemented as a function operator.

100 Jean-Daniel Nicolet

r=-=-=- ————
e Arg
R jResult J'
<< Generic programming template>> <<STL related template>>
Accumulator unary_function
% <<cdtor>> Accumulator() A
S <<Accessor>> getTotal() I
A <<Place holder>>
1 unary_function< const T&,void >
I
<< Nested typedef>> F==---
NthPowerSummator P T I
(from SummatorHolder) no
T << Generic programming template>>
1 1 SummatorHolder
|
I -summator (7% <<operator>> operator()()
1 1 (% <<Accessor>> getSummator()
|
| r=—--
T |
\I/ ! n |

|

<< Generic programming template>>
UnrolledPower

Fig. 3. The summator holder template class for statistical visitors

Why don’t we use inheritance between the summator holder and the accumulator ?
Public inheritance would actually not be necessary, because we only want to reuse
part of the accumulator functor. Private inheritance would do, but there is no virtual
method to redefine. Hence, aggregation introduces the least coupling. Our summator
holder class has a member of its own nested typedef type, visible on the above
diagram as a composition relationship.

We are now fully equipped to define the core template class of the whole system.
A summator holder holds the sum of the n" powers of the data items it receives. A
statistical estimator of order n needs also all sums of smaller order. The idea is to
compose them all using recursive template inheritance, as shown hereafter:

The most striking point on the diagram is the recursive inheritance relationship
illustrated by the bounding relation coming down under the template itself. One sees
how useful the place holder class may be in such a diagram to help understanding the
recursion correctly, especially the template parameter mapping. The other inheritance
relation is toward our summator holder class. Hence, the resultor hierarchy builds a
kind of trunk with summator holder branches. The higher the ladder bar, the lower the
power exponent.

Generic Visitor Framework Computing Statistical Estimators 101

I I -——-
| 1 :- T :
! <<Place holder>> LI
: Resultor< T,n-1> << Generic programming template>>
I SummatorHolder
I
I <<Prot¢cted>> rT=—- /i\
I - I :
I 1_ . |
! << Generic programming template>> <<Rrotected>> "
: Resultor I
| {79 <<operator>> visit() :
: [<<Accessor>> getResult() I
I A A I
| ! I |
I I 1 1
1 : << Nested typedef>> << Nested typedef>>
. - Inherited1 Inherited2
(from Resultor) (from Resultor)

Fig. 4. The recursive inheritance ladder

Note also that both inheritance paths are protected inheritance. We don’t need
public inheritance and private would be too strict, because each stage must have
access to the whole ladder. This is an interesting case where both multiple and
protected inheritance are combined. Such a case is rare enough to be underline(ﬂ

There are finally two nested t ypedefs corresponding to the classical “inherited”
trick, to simplify reference to the ancestor classes (see . These aliases are
needed to disambiguate the inherited methods, because the recursive inheritance
automatically brings with it an overriding of all the inherited methods. Because we
need to access both the methods defined at a given stage and all the overridden ones,
it is necessary to use explicit class references. The language luckily has enough
scoping power to allow full disambiguation.

Note also that such constructs are a challenge for the modeling tool. It must
support both the recursive inheritance relation drawing and have enough tuning
possibilities to be able to generate the correct code. We recall that all source files are
generated automatically from the model. This encompasses all classes declarations,
constants, enums, methods skeletons and typedef declarations, but in such
generative template contexts, this corresponds to about 80% of the final code.

Like all recursions, the one presented above must be stopped somehow. This is
achieved with the help of partial template specialization (on the parameter n) of the
resultor template. A single specialization (for n == 0) would be sufficient to solve the

4 The UML specification (see [OMG 00]) does actually not authorize direct inheritance
between templates, although our modeling tool does. An implicit bounding class must be
thought, mapping <T, n> to <T, n>. We used that simplified form to make the diagram
lighter.

102 Jean-Daniel Nicolet

recursion problem, but one aspect remains that we have not yet discussed: the actual
computation of the estimator results based on the various power sums. Further
specializations will help us implementing it. Here is the recursion stopping
specialization:

CT7 70
|_n_ __ _: :_T 1
<< Generic programming template>> N !
Resultor << Generic programming
(7% <<operator>> visit() template>>
(M <<Accessor>> getResult() SummatorHolder

A

<<specialize>> 1 <<Protected>>
1
1

= = =1

L e ==

<<Template specialization>>
Resultor< T, OU >
{#¥ <<operator>> visit()
[<<Accessor>> getResult()
[<<Accessor>> getCount()

Fig. 5. Partial resultor specialization of order O stopping the inheritance recursion

One word about the additional “getCount” method: it is actually a simple alias
of the “getResult” method. Its presence simplifies the result picking amidst the
overridden “getResult” methods by introducing a more typical name. In this case,
at the 0" level, this is the same as the total extracted from the summator holder:

const T& getCount () const
{ return getSummator().getTotal(); }

Note that the generic power functor gives the correct result: accumulating the 0"
power of all data items is precisely the same as just counting them. One could be
tempted to handle this counting result as an integer number, but this is not a good
idea. Not only would it constitute a special case that should be handled specially in
our generic construction, but the equivalent expressed in our fundamental type T is
needed anyway by the higher order resultors to do their computations.

Beware that this resultor specialization only inherits from the summator holder of
order 0. Remember, we must stop the recursion! This is the highest branch in our
recursion tree.

The visit method is also trivial at this level:

void visit (const T& arg)
{ inherited::operator() (arg); }

Generic Visitor Framework Computing Statistical Estimators 103

Where we have defined the usual “inherited” typedef. In the general case,
the visit method should delegate to its both ancestors, that is to the summator holder
side branch (for the n" power sum) and along the trunk for the recursion:

void visit (const T& arg)
{ inheritedl::operator() (arg);
inherited2::visit(arg); }

Let’s now consider the specialization of order 2 (order 1 is not very different and a
little less interesting). Note that this time, the specialization actually both specializes
and inherits from the general resultor template. It inherits actually from the order 1,
which is itself a specialization, but this is irrelevant here.

CT7 0 L
y ! :_T I
<< Generic programming template>> i N ,
Resultor << Generic programming
i <<operator>> visit() template>>
A <<Accessor>> getResult() SummatorHolder
A
<<speclalize>> <<Protgcted>>
; . <<Protected>>
[|
<<Template specialization>>
Resultor< T, 2U > << Pseudo namespace>>
iR <<operator>> visit() | MathHelper
[<<Accessor>> getResult() % <<Operator>> sqr()
[<<Accessor>> getSquareSum()
M <<Accessor>> getVariance()

Fig. 6. The second order resultor specialization

The visit method is implemented just as discussed above (general case). Note the
appearance of the new “getSquareSum” method, just delegating to the summator
holder of order 2 (its direct right ancestor). This is again a help in disambiguating the
entangled overridden names. Moreover, this makes the computation of the variance
clearer, as can be seen hereafter:

T getVariance () const
{ return getSquareSum() / getCount ()
- sqgr(getMean());

No need here to use class scoping to choose the correct version of a particular
method. We are rather using the traditional, specialized names. Note that the above
computation makes use of the helper mathematical square function presented earlier.

Two additional resultor specializations are defined: for order 3 (computing the so-
called skewness) and for order 4 (computing the excess). They are defined in a similar
way, with “getCubeSum® and “getBiSquareSum” methods respectively. The

104 Jean-Daniel Nicolet

“getSkewness” and “getExcess” method implements the actual result
computation, and they are a little more complicated than the variance computation.
They both make use of our power template again to compute the cube, respectively
the fourth power of the mean that are needed in the calculation.

These methods are the reason why an actual specialization is needed. The
computation of the n" order statistical estimator is not expressible directly through a
closed formula. An alternating power series expansion is needed as well as additional
specific coefficients. This would make a more generic computation too cumbersome.
Anyway, statistical moments beyond order 4 are never used in practice.

Implementing the Interface

We are not totally finished yet. We must still implement the “Estimatable”
interface, corresponding to the contract we will offer to our clients. Like all interfaces,
this abstract class has virtual methods defining our visitor operations. One may ask
why using virtuality with a framework where all is templatized, hence static by
nature. Moreover, the combination of the two implies that the interface must itself be
a template parameterized by the fundamental type (or one of its ancestors!) This is
actually the point. It could be possible with minor modifications to use the framework
in a polymorphic context should it be needed. This would definitely require the use of
an accompanying traits template. The idea would then be to have different, but
related, types bound together in the traits template. At least three types can be
distinguished:
1. the fundamental type corresponding to the estimator’s result type (and accordingly
to the interface’s template parameter).
2. The internal type used within the estimators to do the summation and the result’s
calculus.
3. The type used to build constants needed when multiplying an intermediate result
by a whole number.
In our simplified case, all three types coincide, making the traits class unnecessary.

Having defined an interface with virtual functions, we need a coupling class
between the recursive resultor classes and the interface. This is achieved with a glue
template class called “NthEstimator”, inheriting privately from the resultor and
publicly from the interface to realize it.

Packing All Together

We now have all needed elements to build our statistical framework. What fails is
a good packaging. Clearly enough, all of the above templates should be instantiated
with the same fundamental type in a given context, although with different power
exponents (and functor variants for the minimum and maximum computation). The
final types we want to offer would be best presented as templatized tpyedefs.
Because it is not directly possible in C++, we have chosen the solution of the

Generic Visitor Framework Computing Statistical Estimators 105

encapsulating template, called “Statistic visitor”. It is actually nothing more than a
parameterized namespace encapsulating the various estimator typedefs.

The practical use of our framework is quite amusing: the simple declaration of the
visitor computing the standard deviation implies the direct or indirect instantiation of
no less than 21 templates, of whom some are used more than once, like the Odd meta-
function. The most complicated estimator, the “Excessor”, stretches this number
till 28. This illustrates the extreme fine granularity of the template meta-programming
approach. The final visitor template class is composed of a lots of small tidbits
classes, like in a game of virtual Lego. This extreme granularity also implies a
corresponding amount of work for the compiler, rendered more difficult by the
extensive use of template partial specializations. The one we used (GNU) was
nonetheless able to tackle that ambitious goal.

Conclusion

Recursive inheritance is yet another interesting and flexible tool offered to
template meta-programmers to implement solutions to inherently recursive problems.

References

[BRJ 98] “The Unified Modeling Language User Guide”, by Grady Booch, James Rumbaugh
and Ivar Jacobson, 1998, ISBN 0-201-57168-4

[Ree 98] “Indirect visitor” & "The (B)Leading Edge: Yet Another Visitor Pattern", by Jack
Reeves, The C++ Report, Vol. 10, No. 3, March 1998, No.5, May 1998 and No. 7,
July 1998

[GHIJ+ 98] “Design Patterns” by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
January 1995, ISBN 0-201-63361-2

[Knu 81] “The art of computer programming”, by Donald Knuth, 1981, Vol.II, §4.6.3,
p. 441-462, ISBN 0-201-03822-6

[Vel] “Template meta-programs”, by Todd Veldhuizen,
http://extreme.indiana.edu/~tveldhui/papers/Template-Metaprograms/meta-art.html

[CzEO00] “Generative Programming: Methods, Tools, and Applications”, by
Krzysztof Czarnecki and Ulrich Eisenecker, June 2000, ISBN 0-201-30977-7

[Str94] “The Design and Evolution of C++7, by Bjarne Stroustrup, January 1994,
ISBN 0-201-54330-3

[OMG 00] “Unified Modeling Specification”, version 1.3, March 200, http://www.omg.org/

http://extreme.indiana.edu/~tveldhui/papers/Template-Metaprograms/meta-art.html
http://www.omg.org/

Base Class Injection

Douglas Gregor, Sibylle Schupp, and David Musser

Computer Science Department
Rensselaer Polytechnic Institute
{gregod, schupp,musser}@cs.rpi.edu

Abstract. Class hierarchies, though theoretically reusable, have gener-
ally not seen much practical reuse in applications, due in part to the
inflexibility of the inheritance relationship. We present a technique, base
class injection, that allows the creation of generative class hierarchies
that may be adapted by adding new methods, data members, and an-
cestor classes without modification to the class library code; an imple-
mentation of this technique in the C++ language is given.

1 Introduction

Inheritance is a powerful yet inflexible tool for program construction in object-
oriented programming languages [22]. Inheritance is intended to convey the hi-
erarchical structure of data and code and to foster a large degree of code reuse.
While proper design of inheritance hierarchies has been successful in conveying
the structure of data, the much-touted reusability of class hierarchies has not
occurred [7/9/16].

The limited reuse of class hierarchies is due to many factors, one of which
is the inextensibility of inheritance. The direct ancestors of a given class are
chosen at the design time of that class, and are not changed barring a source
code rewrite. While this is often reasonable—a class’s parents define much of
what that class is—it is inflexible, in that certain relationships may exist between
two independently developed class hierarchies that cannot be expressed through
inheritance without modifying either class hierarchy. Essentially, the limitation
to reusability of class hierarchies is that they may only be extended by creating
a new leaf in the inheritance graph.

To foster reuse of class hierarchies, we must make them extensible beyond the
limited benefit of creating a new leaf in the inheritance graph and instead allow
the class hierarchy to be customized at all levels. Extensibility in this case means
that we must be able to express relationships between classes and hierarchies
that were unknown or nonexistent at class hierarchy design time, but come into
existence because of a particular usage of the class hierarchy. Such relationships
occur when a class hierarchy is adapted to a particular program environment
that requires certain global properties such as persistence, reflection, or garbage
collection; they may also occur when two independently developed libraries are
found to have common properties that could be exploited if only the libraries
shared the same interface.

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 106-[IT7 2001.
© Springer-Verlag Berlin Heidelberg 2001

Base Class Injection 107

We will present a motivating example in Section [along with a sketch of our
solution using a technique we call base class injection. Section [B] will highlight
the requirements of a base class injection system, along with the basic language
requirements needed to implement such a scheme, and Section H] details the
implementation of base class injection in Standard C++. Complete source for
a base class injection library is listed in the appendix and we are planning a
submission to Boost [11] for formal review.

2 Adapting to New Interfaces

We start our example considering an application developed with a hypothetical
graphical user interface widget library named GOOEY. The GOOEY library
handles the usual widgets, including buttons, menus, and text entry fields. For
reference, we will assume it is implemented as an object-oriented hierarchy sim-
ilar to that in Figure[I

I

GraphicButton [GraphicalMenultem |

CheckBoi Menu l RadioGroup‘ l ToolB arl

Fig. 1. Inheritance hierarchy for the hypothetical widget library, GOOEY

Late in the development of our application, it is determined that our cus-
tomers require an interface that also suits visually impaired users. While much
of the information required for an audible interface exists in the instances of
widgets used in the user interface, the information is not accessible in the form
necessary for an audible interface. For instance, the label of a Button conveys
the functionality of the button and could be used in conjunction with a text-to-
speech synthesizer and, similarly, a RadioGroup may have a caption describing
its function and a CheckBox would convey both its label and whether it is se-
lected or not. Had we designed the GOOEY widgets with an audible interface in
mind, we would have provided a common interface to the audible description of
each widget. Each widget would provide an implementation appropriate for the
style of widget: a Button would convey the functionality of a button press, and
a CheckBox would customize a Button to include whether it is selected or not.

Given that we are unable to directly modify the GOOEY library, how can we
include the audible description interface in each widget of the GOOEY library,
customizing the access methods for any widget? One common technique is to
wrap the functionality of the GOOEY library in a set of wrapper classes that

108 Douglas Gregor et al.

each implement the audible description interface. This method is tedious and
error-prone and is also brittle: changes in the GOOEY library will have to be
reflected in the wrapper classes. We present a more natural and resilient solution
based on base class injection.

With base class injection, we create an audible description interface class
and then inject it into the GOOEY class hierarchy as a base class of Widget.
Then, we use base class injection to override the methods of the audible descrip-
tion interface in subclasses of Widget that require a specific audible interface.
Our application remains unchanged by the addition of this code, but we now
possess the capability to access the audible listener interface of any widget. Fig-
ure 2 illustrates a portion of the resulting GOOEY hierarchy with the injection
of the AudibleDescription interface at the root, with overrides injected for
the Button and CheckBox subclasses. We have essentially customized the en-
tire GOOEY class hierarchy without requiring a change to the GOOEY library
source code by injecting an additional interface (and its implementation) into
the preexisting hierarchy. Note also that the injections are performed without
regard to the intervening class hierarchy, so this solution does not suffer from
the same brittleness experienced with wrapper approaches. Furthermore, ad-
ditional interfaces—such as one for handheld computers—could be developed
independently of the audible interface, and at compile time the appropriate set
of interfaces could be selected, essentially giving the developer the power to gen-
erate a class hierarchy specific to the needs of the given application but without
requiring hooks into the actual class hierarchy source code.

GOOEY Library : Audible Adaptors

/[AudibleDescription |
: AudibleButton
4 = N A

AudibleCheckBox

ToolBarButton

Fig. 2. The GOOEY class hierarchy with the AudibleDescription interface injected
at the root class Widget and later reimplemented for the Button and CheckBox classes.

3 Base Class Injection

Base class injection may be characterized by the extension and augmentation of
existing class libraries at any point in the class hierarchy without the need for

Base Class Injection 109

rewriting library source code. We now enumerate the exact requirements of a
base class injection implementation to better understand its capabilities:

1. It should allow arbitrary classes to be prepared to receive injections. Once
prepared any class can be injected into that class without modifying the
source code for the class receiving the injection.

2. It should not change the type of the class receiving the injection, so that no
code modifications are necessary after the injection.

3. Common object-oriented features, such as virtual method invocation, encap-
sulation, and polymorphism, should be available with respect to the injected
base class and its members.

4. Tt should minimize additional run-time overhead.

We see from our example in the previous section that all of the properties are
necessary to augment the GOOEY library with an interface for the visually im-
paired. We inject an interface class AudibleDescription not known at the time
the GOOEY class library was designed (Property #1), without changing the
types of any of the classes in the GOOEY library so that only recompilation
is required to access the new functionality (#2); finally, we use virtual func-
tion overriding to customize the implementation of the AudibleDescription
interface for different classes in the GOOEY class library (#3) and, although it
was not explicitly stated, we assume polymorphic behavior from the augmented
class hierarchy, that is, we can rely on the ability of any Widget to be viewed as
an implementation of the AudibleDescription interface. The final requirement
(#4) is one of efficiency—for an organizational technique to be adopted it must
clearly have little negative impact on the run-time efficiency of the system.

It is beneficial to understand the key language features required for an im-
plementation of base class injection. It is clear that we are considering object-
oriented or hybrid languages with inheritance. We restrict our discussion to stat-
ically typed languages; similar techniques for the dynamically typed languages
Ruby and Smalltalk are discussed in Section Bl We now isolate the language
requirements for base class injection:

1. It must support multiple inheritance or, more generally, allow for a given
class to extend two classes neither one of which is derived from the other.

2. It must support a method of specifying the base classes to inject for a given
class, and statically collect this list of base classes.

3. It must support a method of delaying the full definition of a class until all
of its base classes are known.

The first requirement is obvious; the second essentially requires the ability to
specify a list of base classes that a given class must inherit. For a statically typed
language, this list must be built statically. The third requirement is the most
interesting; it requires that a class be developed with no knowledge of the base
classes that may later be injected, but the language must not prohibit references
to the class prior to its full definition. Forward referencing minimally fits this
requirement, though it places an unfortunate burden on the library developer

110 Douglas Gregor et al.

and user to provide declarations and definitions in entirely different areas, with
base class injections declared after forward declarations, but before definitions.

It is worth noting that such a system could be constructed from a very
type-strict and non-generic language such as Java [4] only with the assistance of
external programs. For instance, a source code preprocessor or source-to-source
translator that scans an auxiliary database and adds additional implements
clauses and methods could be used to satisfy the second and third language
requirements (Java interfaces support multiple inheritance).

We next illustrate that the C++ language [3] already meets or exceeds these
requirements and stress that no extensions to the language are necessary to
support base class injection.

4 Implementation

Our C++ implementation relies on some advanced features of the C++ language
and on techniques well-known in the C++ community. Most prominently, we will
use C++ templates to meet the second and third language requirements for base
class injection, using partial specialization, traits [5], and template metapro-
gramming [10J21]. Templates will also allow us to delay the actual definition of
a class until it is absolutely necessary, thereby allowing the user a large degree
of freedom in the timing of class injections.

We will explore the implementation of base class injection first from the user’s
perspective, covering injection of base classes and overriding virtual methods in
injected classes in Sections 1l and 221 then move to the interface used by the
library designer to build a class hierarchy that can accept injections in Sec-
tion 3l Finally, we explain the implementation of a base class injection library
in Section L4

To avoid any ambiguity regarding the actual class being injected and the
class receiving the injection, we will call the class receiving the injection the
receiver. The class that is being injected into the receiver will be called the
injected base class. Therefore, in our example from Figure P] Widget, Button,
and CheckBox are all receivers, while AudibleDescription, AudibleButton,
and AudibleCheckBox are all injected base classes.

4.1 Injecting a Base Class into a Receiver

Injecting an arbitrary base class into a receiver is performed by specializing
one of two template classes, base_class or virtual base_class. Figure Blillus-
trates the injection of the base classes AudibleDescription, AudibleButton,
and AudibleCheckBox into the receiver classes Widget, Button, and CheckBox,
respectively. The Tag template parameter is essential to the C++ implementation
of base class injection and is explained in Section E3]

From Figure Bl we see that virtual base_class is parameterized by two
template parameters. The first parameter is the name of the receiver, and the
second is an index value. For the first injection into a given receiver, this value

Base Class Injection 111

template<typename Tag> struct virtual_base_class<Widget<Tag>, 0>
{ typedef AudibleDescription base; };

template<typename Tag> struct virtual_base_class<Button<Tag>, 0>
{ typedef AudibleButton base; I};

template<typename Tag> struct virtual_base_class<CheckBox<Tag>, 0>
{ typedef AudibleCheckBox base; I};

Fig.3. Injecting the base classes AudibleDescription, AudibleButton, and
AudibleCheckBox into the GOOEY library classes Widget, Button, and CheckBox

should be zero; for the second injection into that receiver, it should be one, and so
on (each receiver has its own counter). The member type base declares the base
class to be injected. The template classes base_class and virtual_base_class
differ only in the method used to derive from the injected base class—base_class
defines base classes that will be injected into the receiver via nonvirtual public
inheritance, whereas virtual _base_class defines base classes injected via vir-
tual public inheritance. For those unfamiliar with C++ terminology, a given class
A that is inherited nonvirtually a certain number of times in a hierarchy will
show up that many times in a hierarchy. However, if all inheritance of A in a
hierarchy is virtual, it will appear only once. We will use this powerful feature
later when describing the overriding of virtual functions introduced through base
class injection in Section [4.21

4.2 Overriding Virtual Function Injections

Our injected base classes may declare virtual functions and it is essential that
we be able to override these virtual functions at a later point in the hierarchy.
Figure Hlillustrates the definition of the AudibleDescription class and its de-
scendants, including the virtual function getAudioText that is overridden in
each descendant.

The only point of interest in the overriding of injected virtual functions is the
virtual keyword that specifies virtual inheritance of the AudibleDescription
and AudibleButton classes. Revisiting Figure [we see that we had assumed
virtual inheritance of the injected classes in the construction of our inheri-
tance lattice—without it, both AudibleButton and AudibleCheckBox would
have their own distinct copies of the AudibleDescription interface, causing
conflicts during name resolution on the AudibleDescription interface.

4.3 Preparing the Receiver

Preparing a receiver class to accept injections requires only a few small changes
to the definition of the receiver class. The receiver will publicly derive from a
class bases that represents the unknown set of base classes, specializing it based
on the name of the receiver, as is illustrated in Figure Bl This is reminiscent of

112 Douglas Gregor et al.

class AudibleDescription
{ public: virtual AudioText getAudioText(); };

class AudibleButton : virtual public AudibleDescription
{ public: virtual AudioText getAudioText(); 1};

class AudibleCheckBox : virtual public AudibleButton
{ public: virtual AudioText getAudioText(); 1};

Fig. 4. Injecting and overriding virtual methods with base class injection

the well-known B & N trick [5] that customizes the ancestors of a class based on
the descendant class as a method of supporting multiple implementations of a
common interface through a common base class template while preserving static
bindings.

template<typename Tag = default_tag>
class Widget : public bases< Widget<Tag> > { /* ... x/ };

Fig. 5. Preparing a receiver for base class injection

The explanation of the Tag parameter delves deep into the intricacies of
the C++ language. The so-called One Definition Rule [3] states that any entity
may only be defined once. A non-template class is defined when its class body
is defined, therefore non-template receiver classes give us no chance to inject
injectable base classes because they are immediately defined. Template classes,
on the other hand, are not fully defined until they are instantiated with a given
set of template parameters. By adding the Tag template parameter we ensure
that our receiver class is a template class and is therefore not fully defined
before user code requires a definition. In effect, this allows the receiver class
to be written without regard to the base classes that may be injected later.
The injected base classes may then be included up until the first concrete usage
(i.e., one that requires knowledge of the size of the class or accesses its member
variables).

The Tag parameter has an additional usage allowing multiple distinct hierar-
chies in a single translation unit. The tag denotes a specific set of injections, e.g.,
Audible or Handheld. Figure Bl illustrates that Widget can be injected with ei-
ther an AudibleDescription class or a HandheldDescription class, depending
on whether the tag is Audible or Handheld.

4.4 Collecting Injected Base Classes

Moving to the implementation of a base class injection library, we present a
technique for collecting the set of injected base classes and deriving from each

Base Class Injection 113

template<typename Tag> struct virtual_base_class<Widget<Tag>, 0>
{ typedef placeholder_base_class base; };

template<> struct virtual_base_class<Widget<Audible>, 0>
{ typedef AudibleDescription base; };

template<> struct virtual_base_class<Widget<Handheld>, 0>
{ typedef HandheldDescription base; };

template<typename Tag> struct virtual_base_class<Widget<Tag>, 1>
{ typedef GarbageCollected base; };

Fig. 6. Using tags to allow multiple versions of a hierarchy to coexist in a translation
unit. All Widgets will derive from GarbageCollected

of them. We use template metaprogramming to traverse the list of injected base
classes and create an inheritance chain containing all injected base classes.

We refer again to Figure Bl and note that the second template parameter
of base_class, the index value, mimics the familiar concept of an array index.
Essentially, base_class is a compile-time resizeable array: to insert elements, we
specialize base_class given the next index value; the base member type is the
value of the element at the given position in the array. This linearization does
not hamper base class injection in any way: injected base classes parameterized
by their receivers may access extensions made by other injected base classes
regardless of base class ordering.

Iteration through such a data structure is clear: starting a counter at zero,
we access the base type to get the element value and increment the count to
access the next element, but how do we know when to terminate iteration?
C++ contains the notion of a primary template, that is, a template that will
be selected if no (partial) specialization matches the given set of arguments. We
therefore define a sentinel type end and a primary template for our compile-time
array base_class that contains end as its value; then, our iteration construct
terminates when it finds that the current element is end. Figure[7 illustrates the
end class, the primary template for base_class, and the class gather _bases
that creates the derivation chain including all injected base classes.

5 Related Work

Our work is most similar to work done by Ossher and Harrison [T9] where object
systems were extended by combining base hierarchies (e.g., the GOOEY library)
with extension hierarchies (e.g., the audible and handheld hierarchies). Ossher
and Harrison discuss extension by adding new superclasses, but opted to use
composition operators within a new language because adding new superclasses
“changes the structure of the inheritance hierarchy at an internal node, a type of
change that is usually poorly supported by object-oriented systems” and which,

114 Douglas Gregor et al.

struct end {};

template<typename Receiver, int Index = 0>
struct base_class { typedef end base; };

template<
typename Receiver,
int Index = O,
typename Base = typename base_class<Receiver, Index>::base>
struct gather_bases : public Base,
public gather_bases<Receiver, Index+1> {};

template<typename Receiver, int Index>
struct gather_bases<Receiver, Index, end> {};

Fig. 7. Implementation of a template class to manage the derivation from any number
of injected base classes, along with the default definition of the base_class class

they assumed, “requires editing the original class.” While this assumption was
probably valid for all programming languages (including C++) at the time of writ-
ing, our technique demonstrates how modern C++ fully supports such changes
in the inheritance hierarchy without source code editing.

Our view of the reusability problems with class hierarchies can be likened
to the motivations behind aspect-oriented programming [I5l14] in that class
hierarchies that are conceptually distinct often have common roots that express
basic system-wide properties. In aspect-oriented programming terminology, these
common base classes implement functionality that cross-cuts the hierarchies, and
the resulting implementation that joins them tangles the two hierarchies together
in an unnatural way. Our technique is supportive of aspect-oriented programming
in that it provides another method for keeping conceptually distinct hierarchies
distinct in design, and joining them only when necessary by injecting base classes
developed separately to form a single hierarchy. In this way, base class injection
can be seen as a restricted implementation of the weaving process—one for which,
in C++ at least, one does not need any additional tools to implement.

A technique apparently similar to our own is that of mixin classes [8/13],
which are (often abstract) classes that are intended only as base classes to be
“mixed in” to a class as it is used. In most languages mixins are limited in that
they can only generate a new leaf in the inheritance hierarchy. Therefore the use
of mixins requires system-wide changes and, for extensive hierarchy modifica-
tions, necessitates something similar to the wrapping approach described above
because inheritance relationships between the newly-created leaves will need to
be specified manually.

Ruby [I] is a dynamically typed, object-oriented scripting language in which
mixins can be injected at any level of a class hierarchy through reopening of
class definitions. Thus in Ruby, even though it only has single inheritance among
classes, one can use mixins to extend a class hierarchy at all levels without modi-

Base Class Injection 115

fying its source code. Unfortunately, in its unrestricted form in Ruby, the ability
to reopen class definitions breaks encapsulation. This problem could perhaps be
fixed by disallowing access to data members when classes are reopened, but an-
other drawback to implementing base class injection in this way in Ruby is that
only one extension of a given class hierarchy can exist within a single program,
whereas our C++ injection library supports coexistence of multiple extensions.

In Smalltalk, which is also dynamically typed, a technique that could be de-
scribed as a limited form of base class injection was introduced by Kent Beck [6].
This technique allows extending an instance of a class without changing the
source code of the class. However, it only allows modifying a particular instance
of a leaf node.

Work in the refactoring of inheritance hierarchies [18l[12] is rooted in the
same realization that at some point in the lifetime of a class hierarchy inheritance
becomes too inflexible. Refactoring itself is very different—it relies on source code
transformations and changing inheritance relationships among classes already
in a given class hierarchy. Since base class injection allows reorganization with
minimal code change, it may be preferable to refactoring in some situations, such
as independent development of classes by different programmers. Refactoring
may, however, help identify classes that would best be abstracted outside of the
class hierarchy and later injected.

6 Conclusion

Inheritance is a powerful and essential feature of object-oriented languages, but
its ability to foster reuse is degraded by its inflexibility. One limitation to class
hierarchy reuse across applications is that extensibility of class hierarchies is
confined to extension by new leaves.

Base class injection overcomes this significant limitation to the reusability of
class hierarchies by enabling the injection of new base classes and new functional-
ity into a class hierarchy. Such a capability enables class libraries to better adapt
to specific uses, whether it be to environmental requirements such as base classes
common to all class types (e.g., for reflection, persistence, or synchronization)
in a system or through the injection of new interfaces. Base class injection is a
tool for increasing the adaptability of a class hierarchy, overcoming limitations
in inheritance and resulting in more reusable class hierarchies.

The appendix contains source code for a complete C++ base class injection
library. Though the implementation of base class injection requires in-depth
knowledge of the C++ language, its application is easily grasped by non-experts.
The examples given in Figs. Bland [Blmay be reused substituting only class names
and index numbers, making base class injection practical for all programmers.

We have successfully employed the base class injection technique in the Al-
gebra library [20] as part of the Simplicissimus [2] project, where concepts—sets
of abstractions—are represented as C++ template classes as a way of express-
ing concept lattices such as those defined by the Tecton language [I7]. Concept
refinement is expressed as class inheritance, but some refinement relations are

116 Douglas Gregor et al.

not known at library design time and are introduced only later in user code—as
a counterpart of Tecton lemmas, which establish refinement relations between
previously defined concepts. Base class injection allows us to model such lemmas
without modifying the library source code.

References

1. Ruby: a gem of a language. http://www.ruby-lang.org, [114

Simplicissimus. http://www.cs.rpi.edu/research/gpg/Simplicissimus| [II5H]

3. ANSILISO-IEC. C++ Standard, ISO/IEC 14882:1998, ANSI standards for infor-
mation technology edition, 1998. [II0,

4. K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
Reading, MA, 1998.

5. J.J. Barton and L. R. Nackman. Scientific and Engineering C++: An introduction
with advanced techniques and examples. Addison-Wesley, 1994.

6. K. Beck. Instance specific behavior: How and why. Smalltalk Report, 6(2), 1993.

7. J. M. Bieman and J. X. Zhao. Reuse through inheritance: A quantitative study
of C++ software. In ACM SIGSOFT Symposium on Software Reusability, pages
47-52, 1995.

8. G. Bracha and W. Cook. Mixin-based inheritance. In N. Meyrowitz, editor, Pro-
ceedings of the Conference on Object-Oriented Programming: Systems, Languages,
and Applications / Proceedings of the Furopean Conference on Object-Oriented
Programming, pages 303-311, Ottawa, Canada, 1990. ACM Press. [I14]

9. S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476-493, June 1994.

10. K. Czarnecki and U. W. Eisenecker. Generative Programming— Towards a New
Paradigm of Software Engineering. Addison Wesley Longman, 2000.

11. B. Dawes and D. Abrahams. Boost. http://www.boost.org.

12. G. Fischer, D. Redmiles, L. Williams, G. I. Puhr, A. Aoki, and K. Nakakoji. Be-
yond Object-Oriented Technology: Where Current Approaches Fall Short. Human-
Computer Interaction, 10:79-119, 1995.

13. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Conference
Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, San Diego, California, pages 171-183, New York,
NY, 1998. [[I4]

14. G. Kiczales, E. Hisdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
overview of AspectJ. In European Conference on Object-Oriented Programming
(ECOOP01), 2001. [I14]

15. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwi. Aspect-oriented programming. In European Conference on Object-
Oriented Programming (ECOOP’97), 1997. [[14]

16. A. Lake and C. Cook. A software complexity metric for C++. Technical Report
92-60-03, Computer Science Dept., Oregon State University, 1992. [106

17. D. R. Musser. The Tecton Concept Description Language.
http://www.cs.rpi.edu/ "musser/gp/tecton/tectonl.ps.gz, July 1998.

18. W. F. Opdyke and R. J. Johnson. Refactoring: An Aid in Designing Application
Frameworks. In Proceedings of the Symposium on Object-Oriented Programming
emphasizing Practical Applications, pages 145-160, 1990.

N

http://www.ruby-lang.org
http://www.cs.rpi.edu/research/gpg/Simplicissimus
http://www.boost.org
http://www.cs.rpi.edu/~musser/gp/tecton/tecton1.ps.gz

Base Class Injection 117

19. H. Ossher and W. Harrison. Combination of inheritance hierarchies. In A. Paepcke,
editor, Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), volume 27, pages 25-40, New York, NY,
1992. ACM Press. [I13

20. S. Schupp, D. P. Gregor, and D. Musser. Algebraic concepts represented in C++.
Technical Report TR-00-8, Rensselaer Polytechnic Institute, 2000.

21. T. Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4), 1995. IOl

22. P. Wegner. Dimensions of object-based language design. In N. Meyrowitz, edi-
tor, Proceedings of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), volume 22, pages 168-182, New York, NY,
1987. ACM Press.

Injection Library Source

struct default_tag {};
struct end {};

// Users add nonvirtual base classes to this list
template<typename T, int Index = 0>
struct base_class { typedef end base; };

// Users add virtual base classes to this list
template<typename T, int Index = 0>
struct virtual_base_class { typedef end base; 1};

template<typename T,
int Index = O,
typename Base = typename base_class<T, Index>::base>
struct gather_bases : public Base, public gather_bases<T, Index+1> {};

template<typename T, int Index>
struct gather_bases<T, Index, end> {};

template<typename T,
int Index = 0,
typename Base = typename virtual_base_class<T, Index>::base>
struct gather_virtual_bases :
virtual public Base, public gather_virtual_bases<T, Index+1> {};

template<typename T, int Index>
struct gather_virtual_bases<T, Index, end> {};

// Receiver classes derive from this
template<typename T>
struct bases : public gather_bases<T>,

public gather_virtual_bases<T> {};

1

Reflection Support
by Means of Template Metaprogramming

Giuseppe Attardi, Antonio Cisternino

Dipartimento di Informatica, corso Italia 40, I-56125 Pisa, Italy
{attardi,cisterni}edi.unipi.it

Abstract. The C++ language has only a limited runtime type information sys-
tem, which doesn’t provide full reflection capabilities. We present a general
mechanism to support reflection, exploiting template metaprogramming tech-
niques. Two solutions are presented: a static one where metaclass information is
only available at compile time to produce class specific code; and a dynamic
one where metaclass objects exist at runtime. As a case study of technique we
show how to build an object interface to relational database tables. By just an-
notating a class definition with meta information, such as storage attributes or
index properties of fields, a programmer can define objects that can be stored,
fetched or searched in a database table. This approach has been used in building
a high-performance, full text search engine.

Introduction

When building generic components, capable of handling a variety of object types, not
yet known, the programmer is faced by a number of possibilities:

1.

produce a library totally unaware of the specific kind of objects used by applica-
tions of the library. This is typical of C-based libraries, where parameters are
passed as arrays of raw bytes (i.e. void*). The application programmer must sup-
ply custom code required for converting back and forth the parameters between the
library and the application.

. provide a multiple variant API, for a certain programming language, which in-

cludes one special function for each basic type, used to inform the component of
each specific supplied parameter [5, 6, 8, 10]. Consider for instance database inter-
faces like ODBC, graphic libraries like OpenGL. The component in this case has
more information available on parameters and can perform optimizations and pro-
vide higher-level services. The programmer must write sequences of invocations
whenever complex parameters are involved.

. extend the application programming language with ad-hoc primitives for interact-

ing with the component, and supply a code generator or preprocessors which per-
forms source to source code transformations, producing specific code for each ap-
plication. For instance embedded-SQL allows inserting SQL-like statements within
an ordinary program: a preprocessor translates embedded SQL into suitable data-
base system calls.

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 118-127, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Reflection Support by Means of Template Metaprogramming 119

4. develop a special purpose language for programming the component: e.g. Macro-
media Lingo, PL/SQL [10], etc.

5. exploit reflection [1]. Using reflection the library can inspect the parameter types
and optional traits and determine the proper way to handle them, e.g. converting
them or handling them with the most appropriate specific code.

Reflection is the most advanced and powerful solution, since it does not involve ex-
ternal tools from the programming language, relieves the application programmer
from low level interface coding, and enables a variety of domain optimization by the
component developer. Unfortunately reflection is not generally available in most
programming languages: most notable exceptions are Java, C#, CLOS, Smalltalk.

There are a few proposals for extending C++ with support for reflection. In [14, 15,
16] keywords are added to the language for specifying the location of meta-
information. A preprocessor generates C++ source code containing the appropriate
classes that reflects program's types. In [13] a similar approach is presented which
avoids the use of special keywords but still uses a preprocessor.

OpenC++ instead extends the C++ compiler providing support for reflection during
program compilation [17].

As pointed out in [12] the ability of handle reflective information at compile time
leads to more efficient and usable reflection-oriented programs. Nevertheless the
capability of accessing meta-information at runtime is fundamental for supporting
dynamic binding.

We present how to implement the technique of reflection in C++ by means of tem-
plate metaprogramming, which allows executing code at compile time which accesses
type information without involving a preprocessor. It is supported in standard C++
and can be used with any recent C++ compiler.

While reflection is normally available and used by a program at run time, our ap-
proach provides reflection support also to metaprograms at compile time. This allows
generating a specific version of the program or library, optimized to the special kind
of parameters in the application.

As a case study of the use of reflection, we show how to build an object interface
to a relational database table. The metaclass for objects to be stored in the table can be
annotated with custom information about methods and attributes, useful for instance
to express specialized traits, like indexing properties and size for a database column.

2 C++ Template Metaprogramming

C++ supports generic programming through the femplate mechanism, which allows
defining parameterized classes and functions. Templates together with other C++
features constitute a Turing-complete, compile-time sublanguage of C++. C++ can be
considered as a two-level language [2] since a C++ program may contain both static
code, which is evaluated at compile time, and dynamic code, which is executed at
runtime. Template meta-programs [2] are the part of a C++ source that is executed
during compilation. Moreover a meta-program can access information about types not
generally available to ordinary programs — with the exception of the limited facilities
provided by the Run Time Type Identification (RTTI) [3].

120 Giuseppe Attardi and Antonio Cisternino

Template metaprogramming exploits the computation performed by the type
checker to execute code at compile time. This technique is used mostly for code selec-
tion and code generation at compile time. Its applications are mainly code configura-
tion, especially in libraries, and code optimization [2].

Partial evaluation can be used to produce optimized code, specialized for a particu-
lar combination of the arguments, allowing, for example, the development of generic
libraries that are specialized for each particular type used in an application.

In the examples below we use some useful meta-functions for testing types and
perform other common metaprogramming tasks [9], for instance, If<Condition,
Then, Else>, IsClass<T>, IsPointer<Ts>, IsConst<T>, Equals<T,
U>, IsA<T, Us>.

We exploited metaprogramming for providing an introspection facility for C++.

3 C++ Reflection

Throughout the paper we will use the following example of a C++ class, named Do-
cInfo, which contains information about a collection of documents. The class defi-
nition is enriched with meta-information, as follows:

class DocInfo {

char const* name;
char const* title;
char const¥* type;
int date;

META (DocInfo,
(VARKEY (name, 2048, Field::unique),
VARFIELD (title, 2048),
VARFIELD (type, 32)),
KEY (date)) ;

}i

META is a macro which exploits template metaprogramming for creating a metaclass
for the class, as described later. Such annotation is the only effort required to a pro-
grammer for being able to use reflection on a certain class. The type of each attribute
is in fact deduced from the class definition, using template metaprogramming. Macros
VARKEY and VARFIELD allow supplying attribute traits: 2048 and
Field: :unique for instance express storage properties of the attribute in our ap-
plication: in particular the maximum byte size and the kind of indexing for the col-
umn.

Using introspection capabilities we can define the template class Table that im-
plements a persistent table containing objects of a specified class:

Table<DocInfo> table("db/table") ;

The table can be queried through a cursor created on the results of the query, which
behaves essentially like an iterator on a list of objects.

Reflection Support by Means of Template Metaprogramming 121

Reflection involves creating a metaclass cointaining information about each class.
We describe how to provide interospection and intercession capabilities both to
metaprograms, through a metaclass type (static reflection), and to programs, through
metaclass objects present at runtime (dynamic reflection).

We limit our discussion to how to handle reflection on attributes of classes: con-
structors and methods may be dealt similarly.

Static reflection

In static reflection, the metaclass of a particular class (Foo), is defined by a corre-
sponding class (MetaFoo). The latter class stores information about the described
class in static members. For instance, let us consider the following class:

class Foo {
int attril;
char* attr2;

}i
The associated metaclass is the following:

struct MetaFoo {
typedef ctype class;
typedef Reflection::End curr typeO;

static char* const name = "Foo";
// Field attril
struct attrl name { static char* const name = "attrl"; };

typedef Reflection::Field<attrl name, class,
(int) &(((class*)0) ->attrl), int, curr typeO> curr_ typel;
// Field attr2

struct attr2 name { static char* const name = "attr2"; };
typedef Reflection::Field<attr2 name, class,
(int) &(((class*)0) ->attr2), char*, curr typel> curr type2;

typedef curr type2 attributes;

1

The metaclass describes the attributes and methods using a template list. An attribute
is described by the following class:

template<class name , class cont, int offs, class h_,
class t_ = End,
class traits_ = Reflection::defaultTraits>

struct Field f{
typedef cont memberof;
typedef h attr type;
typedef t Tail;
typedef traits_ traits;
enum { size = sizeof (attr_type), offset = offs };
static char * const name = name_::name;

122 Giuseppe Attardi and Antonio Cisternino

A class field is described by suitable template parameters: t _ represents the tail of the
list, End the end of the list, h_ the type of the attribute which is stored in a typedef
within the class, cont is the class containing the field.

Without going into the details of the implementation, we just mention that the meta-
class provides informations like these:

MetaFoo: :class; // the type Foo
MetaFoo: :name; // the string "Foo"
MetaFoo: :attributes: :type; // type char*
MetaFoo: :attributes: :name; // the string "attr2"

The static metaclass can be used either by meta-functions or by standard code. In
the former case all computation is performed at compile time, while in the latter case
types and constants defined in the metaclass can be used at runtime.

The generic template metafunction Serialize for instance produces code for se-
rializing an object of a given type. This is the base case for the function:

template <class T>
struct SerializeBase ({
static void serialize(T *p, byte* buffer) {} };

SerializeBase is called for the End type terminating the recursion through the
list of attributes of a class. The general case is the following:

template <class T>
struct Serialize
static void serialize (typename T::memberof *p,
byte* s) {
typedef Reflection::If<
IReflection: :Equals<typename T::Tail,
typename Reflection::End>::VAL,
Serialize<typename T::Tails,
SerializeBase<typename T::memberofs> >::VAL next;
next::serialize(p, s);

typename T::type *m =
(typename T::type *) ((char*)p + T::offset);
(T)m = *(T*)s;
}
}i

Method serialize () generates the appropriate sequence of assignments for stor-
ing each field of the object, by recurring over the list of attributes of the metaclass. At
each step, serialize () gets called on the type of the next attribute. This generates
the serialization code for the following attributes. The current attribute gets serialized
by knowing the base pointer of the object and the attribute offset. An object f£oo can
be serialized to a location dest as follows:

Serialize<MetaFoo: :attributes>::serialize (foo) ;

Reflection Support by Means of Template Metaprogramming 123

Static reflection does not handle subtype polymorphism: a metaprogram can only
know the formal parameter type, not the actual type.

Dynamic reflection

Dynamic reflection uses an instance of class MetaClass for describing a class. Each

class holds a static reference to its metaclass. The META construct for class Foo
produces the following code:

class Foo {
int attril;
char* attr2;

typedef Foo CLASS ;
static Field* createFields() ({
return &(
createField("attrl", (
0, Field::unique, &(
createField ("attr2", (
1024, Field::None, &
)i}
static MetaClass metaClass;
}i

MetaClass Foo:: metaClass("Foo", Foo:: createFields()) ;

int) &((_CLASS *)0)->attrl,
(_CLASS *)0)->attrl),
int) &((_CLASS *)0)->attr2,
((_CLASS *)0)-»>attr2),

Method createFields () builds the list of fields for the class. Function create-
Field () creates an object of class Field with the specified attributes: the name of
the attribute, its offset, the size of the field, whether the field must be indexed and a
pointer to the attribute used to determine the type with template metaprogramming.
The operator, () for class Field has been overloaded to create a linked list of
Fields. The metaclass is initialized with its name and the list of fields. The same ap-
proach can be extended to methods and constructors.

Function createField () uses template metaprogramming to build the proper
Field object and it is defined as follows:

template <class T>
inline Field& createField(char t const *name, size t
offs, size t maxLength,

Field::IndexType indexType, T*) ({

MetaClass* mc = If<isClass<T>::VAL,
getMetaClass<T>,
noMetaClass>: :VAL: :get () ;

return

If< isPointer<T>::VAL,
FieldBuilder<VarField<deref<T>::VAL> >,
If< isClass<T>::VAL,
CompositeBuilder<Ts>,
FieldBuilder<FixedField<T>
> >::VAL

124 Giuseppe Attardi and Antonio Cisternino

>::VAL: :factory (name, offs, maxLength, indexType, mc) ;

Class Field is abstract and can be specialized for different kinds of fields, in par-
ticular: VarField, FixedField and CompositeField. FixedField is used
to represent an attribute of fixed size such as a number or a pointer. VarField is
used to represent a variable length type such as a C string. CompositeField is

Template classes derived from Field provide a method store () for storing the
field of an object in a table row. Here is the case for FixedField:

template <class T>

byte* FixedField<Ts>::store (byte*& row, byte* src) {
(T)row = * (T*)src;
return row + sizeof (T);

The serialization of an object foo of class Foo is performed by the static method
serialize () in Foo’s metaclass Foo: :metaClass:

Foo::metaClass.serialize(row, &(byte*)foo);
which is defined as follows:

byte* MetaClass::serialize (byte*& row, byte* src) ({
for (Field* fd = columns; fd != NULL; fd = fd-s>next)
row = fd->store(row, src + fd->offset);
return row;

}

This method simply iterates over the list of fields and for each field calls its virtual
store () method.

Static vs. dynamic reflection

When using dynamic reflection, having a metaclass is sufficient to manipulate objects
of the corresponding class, hence it is possible to define classes dynamically assem-
bling the field descriptions and other information. For instance, the metaclass for Foo
can be created like this:

MetaClass metaFoo ("Foo",
createField("attrl", 0, 0, Field::unique, (int¥*)O0,
createField ("attr2", 4, 1024, Field: :None,
(char**)0))) ;

Our framework provides class AnyObject to represent instances produced from
such metaclasses, and class DynamicTable for using them in tables:

Reflection Support by Means of Template Metaprogramming 125

AnyObject any (metaFoo) ;
any.field<int>(0) = 5;
any.field<char*> (1) = "value for attr2";
DynamicTable table ("/tmp/foo", metaFoo) ;
table.insert (&any) ;

DynamicTable is just a variant of class Table and defines the same tables, pro-
vided the same metaclass is used. For instance an SQL interpreter needs to use the
DynamicTable interface in order to access a table created with C++ classes, since
the classes it will use are not known at compile time.

Certain methods used with dynamic reflection involve some runtime computations
for interpreting the metaclass information, while with static reflection the body of
such methods is expanded at compile time into code specific for the class. For exam-
ple, the dynamic version of method serialize () iterates through the fields of the
class and calls methods for storing each field. Instead the static version of serial-
ize () consists of a sequence of store operations of the appropriate type for each
field: there is no iteration nor invocation of virtual methods.

On the other hand dynamic reflection can use virtual methods, which cannot be
dealt instead with static reflection.

Both solutions suffer for a minor drawback: namespace pollution, since they intro-
duce classes or types (e.g. MetaFoo, Foo:: CLASS) that might conflict with
names present in the user program.

4 Case Study: A Relational Object Table

An object oriented interface library to a relational table must be capable of storing
objects of any class in rows of a relational table. Therefore the library must know the
structure of the class of the objects in order to perform serialization when storing the
object. The table schema is often extracted from the database itself, which was created
separately or by means of SQL constructs like “create table”. For fetching or
updating objects from a table, the library needs only to provide methods for accessing
the individual fields of a row: the programmer must know and specify the type of
each field being accessed and he is also responsible of storing values of the correct
type into the fields of the object. Table schema definition and table usage are inde-
pendent operations, of which the compiler is totally unaware: none of the information
involved in such operations is available to it, in particular type information.

On the other hand, if the programming language used to implement the interface
library supports introspection [1], the library can exploit it for determining the attrib-
utes of a class and their types. Through intercession [1] the library is then capable of
modifying the object’s attributes by accessing the description of the class.

An interface library built with introspection can provide a higher-level interface to
programmers, relieving them from the burden of reconstructing an object fetched
form a table or supplying detailed information about the class of the object.

We present the design for such an object interface to relational tables. The interface
goes beyond the ability to store flat objects, corresponding to relational rows, and

126 Giuseppe Attardi and Antonio Cisternino

allows storing composite objects, containing other objects. A full object-oriented
database can be build with limited effort on top of this interface.

The relational table interface has been inspired by GigaBase [7], but exploits
metaprogramming in order to produce a suitable metaclass, capable of handling for
instance various kinds of attribute traits. The interface has been used in implementing
IXE, a fully featured, high performance class library for building customized, full-text
search engines.

Class Table implements a relational table stored on disk on a Berkeley Database
[4]. The template parameter to this class defines the structure of the table and must
provide a metaclass through the META construct. Various kind of indexing can be
specified through attributes traits, including inverted indexes and full-text indexes.

A program can load the data into the table as follows:

Table<DocInfo> table(table file);
DocInfo aDocinfol(..);
table.insert (aDocInfo) ;

A query on the table can be performed as follows:

Query query (query string) ;
QueryCursor<DocInfo> cursor (table, query);
while (cursor.hasNext())

DocInfo docInfo = cursor.get();

// use docInfo

}

Differently from traditional interfaces to database systems [5, 6, 8], here the cursor
returns a real object, built from database row data using reflection. The cursor is ca-
pable of accepting complex boolean queries, involving full-text searches on full-text
columns and other typical SQL conditions on other columns.

IXE uses dynamic reflection, which is required for dynamic class creation, a neces-
sary feature for building an SQL interpreter. In future versions of the library we will
combine static and dynamic reflection to exploit the efficiency of static reflection.

5 Conclusions

We have presented a general technique based on template metaprogramming for sup-
porting reflection in C++. Metaprogramming is crucial to the solution since it allows
accessing type information from the compiler and inaccessible otherwise.

We have shown how to use reflection to define a generic component for storing ob-
jects in a relational table. The component can be specialized to any class of objects.
Such component has been used in developing the search engine library IXE. The
application programmer can insert C++ objects directly into the table, without any
conversion. Search the table is done through a cursor interface that allows scanning
the results returned as C++ objects. The IXE library has proven effective in building
several customized search engines and its performance is superior to similar commer-
cial products.

Reflection Support by Means of Template Metaprogramming 127

Future work includes combining static and dynamic reflection. Static reflection
would be the preferred choice with fall-back on dynamic reflection when sufficient
type information is not available.

References

1. R.G. Gabriel, D.G. Bobrow, J.L. White, CLOS in Context — The Shape of the Design
Space. In Object Oriented Programming — The CLOS perspective. The MIT Press, Cam-
bridge, MA, 1993, pp. 29-61.

2. K. Czarnecki, U.W. Eisenacker, Generative Programming — Methods, Tools, and Applica-
tions. Addison Wesley, Reading, MA, 2000.

3. B. Stroustrup, The Design and Evolution of C++. Addison Wesley, Reading, MA, 1994.

4. Sleepycat Software, The Berkeley Database, http://www.sleepycat.com.

5. MySQL, MySQL, http://www.mysql.com.

6. Microsoft, ActiveX Data Objects,

http://msdn.microsoft.com/library/psdk/dasdk/adot9elu.htm.

7. K.A. Knizhnik, The GigaBASE Object-Relational database system,

http://www.ispras.ru/~knizhnik.

Sun Microsystems, Java Database Connectivity, http://java.sun.com/.

9. Petter Urkedal, Tools for Template Metaprogramming,
http://matfys.lth.se/~petter/src/more/metad.

10. R. Sunderraman, Oracle8™ Programming: a primer, Addison-Wesley, MA, 2000.

11. P.J. Plauger, A. Stepanov, M. Lee, D. Musser, The Standard Template Library, Prentice-
Hall, 2000.

12. J. Malenfant, M. Jaques, and F.-N. Demers, A tutorial on behavioral reflection and its
implementation. Proceedings of the Reflection 96 Conference, Gregor Kiczales, editor, pp.
1-20, San Francisco, California, USA, April 1996.

13. Tyng-Ruey Chuang and Y. S. Kuo and Chien-Min Wang, Non-Intrusive Object Introspec-
tion in C++: Architecture and Application. Proceedings of the 20th Int. Conference on
Software Engineering, IEEE Computer Society Press, pp. 312-321, 1998

14. Peter W. Madany, Nayeem Islam, Panos Kougiouris, and Roy H. Campbell, Reification
and reflection in C++: An operating systems perspective. Technical Report UIUCDCS-R-
92-1736, Dept. of Computer Science, University of Illinois at Urbana-Champaign, March
1992.

15. Yutaka Ishikawa, Atsushi Hori, Mitsuhisa Sato, Motohiko Matsuda, J. Nolte, Hiroshi
Tezuka, Hiroki Konaka, Munenori Maeda, and Kazuto Kubota, Design and Implementa-
tion of metalevel architecture in C++ — MPC++ approach. Proceedings of the Reflection
96 Conference, Gregor Kiczales, editor, pages 153-166, San Francisco, California, USA,
April 1996.

16. B. Gowing and V. Cahill, Meta-Object Protocols for C++: The Iguana Approach. Proc.
Reflection '96, San Francisco, California, 1996, pp. 137-152.

17. Shigeru Chiba. A metaobject protocol for C++. Conference Proceedings of Object-
Oriented Programming Systems, Languages and Applications, pp. 285-299, ACM Press,
1995.

il

Scenario-Based Generation and Evaluation
of Software Architectures

Hans de Bruin and Hans van Vliet

Vrije Universiteit
Mathematics and Computer Science Department
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{hansdb,hans}@cs.vu.nl

Abstract. Architecture conception is a difficult and time consuming
process, requiring advanced skills from the software architect. The tasks
of an architect are alleviated if means can be provided to generate ar-
chitectures that can be evaluated with respect to functional and non-
functional requirements. This paper discusses an approach for doing so.
It centers around a rich feature-solution graph which captures the evolv-
ing knowledge about requirements and solution fragments. This graph is
used to guide an iterative architecture development process.

1 Introduction

The architecture of a software system captures early design decisions. These early
design decisions reflect major quality concerns, including functionality. We would ob-
viously like to design our systems such that they fulfill the quality requirements set
for them. Unfortunately, we in general do not succeed in doing so in a straightforward
way. For that reason, we develop an initial architecture, meanwhile making tradeoffs
between quality concerns. We next assess the architecture with respect to its quali-
ties, as far as such is feasible. If necessary, the architecture is next adapted, and the
assessment /adapt cycle is repeated.

This paper is concerned with supporting this iterative process. In particular, we
propose to use a rich feature-solution graph to capture the evolving knowledge about
quality requirements and solution fragments. This graph is next used to guide the
iterative architecture development process.

Our approach to generating and evaluating software architectures combines and
extends the following, widely accepted ideas:

Architectural patterns. By capturing structural and behavioral aspects of (partial)
design solutions together with their quality properties, we may hope to be able
to design and reason about architectural solutions and their quality attributes.
Attribute-Based Architectural Styles (ABASs) have been proposed as a means to
do so. An ABAS combines an architectural style (such as a layered style) with
certain quality characteristics (such as portability) [I1].

Scenario-based evaluation. Architecture evaluation is most often scenario-based.
Different stakeholders are then asked to come up with scenarios of anticipated
use. These scenarios may concern the present set of requirements as well as pos-
sible future extensions or changes. The latter are especially useful to assess the
architecture with respect to structural aspects such as flexibility or modifiabil-
ity. Well-known architecture assessment methods are SAAM (Software Architec-
ture Analysis Method) [7] and its successor ATAM (Architecture Tradeoff Analysis
Method) [§]. The emphasis in ATAM is on identifying interactions between various
quality attributes in a system. So called tradeoff points, i.e. architectural elements
to which multiple quality attributes are sensitive, require to be analyzed carefully.

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 128-[I39] 2001.
© Springer-Verlag Berlin Heidelberg 2001

Scenario-Based Generation and Evaluation of Software Architectures 129

In later publications on ATAM, e.g. [9], attention has shifted from (ex-post) quality
assessments to (ex-ante) architectural approaches with known quality properties,
captured in ABASs.

Goal-oriented requirements engineering. Early approaches to requirements en-
gineering focussed on eliciting and documenting the requirements sec, and not the
reasons for them. In goal-oriented requirements engineering, the relation between
goals and requirements is represented explicitly. Since goals may conflict, this re-
quires resolution strategies to obtain a satisfactory compromise [12J13]. Recently,
representation schemes used in goal-oriented requirements engineering have also
been used to represent dependencies between quality goals and architectural styles
[5].

In our approach, the generation of a software architecture is based on a rich feature-
solution graph, which connects quality requirements with solution fragments at the ar-
chitectural level. The structure of this feature-solution graph resembles that of the goal-
hierarchy in goal-oriented requirements engineering. The solution fragments included
in this graph have much in common with ABASs. This approach is made concrete as
follows (see also Figure [O):

Scenario-based architecture description. Software architectures are described
using a scenario-based modeling technique called Use Case Maps (UCM) [43].
UCM is a diagrammatic modeling technique to describe behavioral and to a lesser
extent structural aspects of a system at a high (e.g., architectural) level of ab-
straction. UCM provides stubs (i.e., hooks) where the behavior of a system can be
varied statically at construction time as well as dynamically at run time. These
stubs provide the basis for generating alternative software architectures with so
called architectural snippets, which are basically small, reusable UCM scenarios.

Architecture generator. An architecture generator generates a candidate software
architecture. It does so on the basis of the feature-solution graph that establishes
the connection between quality requirements and solutions. The generator uses the
graph to fill in UCM stubs with appropriate architectural snippets. This can be
seen as the equivalent of an aspect weaver found in aspect-oriented programming
systems [10].

Scenario-based evaluation. Once an architecture has been generated, it must be
evaluated on the basis of UCM scenarios to assess whether they meet non-
functional requirements. For a number of quality attributes, this can be done
automatically. Other attributes require the expert eye of a software architect.

But do not stop here. An interesting extension to the above scheme is to automat-
ically refine architectures on the basis of evaluation outcomes. Suppose, for example,
that a certain non-functional requirement has not been met in the current architec-
tural solution. By consulting the feature-solution graph, we might come up with several
solutions that can be applied to remedy the shortcoming. Thus, in principle, the out-
come of the evaluation phase can be used to drive the architecture generation process
in the next iteration. That is, the generator selects a solution and then generates a
refined architecture, which is evaluated in its turn. This process is repeated until all
requirements are met or we run out of potential solutions.

The idea to generate architectures driven by functional as well as non-functional re-
quirements is not new. Work in frame technology [I], the framework for non-functional
requirements discussed in [I5], GenVoca generators [2], and aspect-oriented program-
ming [10], have similar objectives. What sets our approach apart is that we use a
scenario-based modeling technique in combination with a rich feature-solution graph.
Generated architectures are evaluated using scenario-based evaluation techniques. The
evaluations might trigger further optimizations in the generated architectures, using
the knowledge captured in the feature-solution graph. These optimizations are then
evaluated again using the same set of scenarios. In this way, we get a closed loop
process, occasionally requiring the architect’s expertise.

In this paper, we restrict ourselves mostly to behavioral aspects such as function-
ality, security, and performance. There are no principal reasons for not supporting

130 Hans de Bruin and Hans van Vliet

Feature-Soulution Graph

Features: Functional and Non-Functional Requirements
Solutions: Scenario-Based Reference Architecture (UCM with Stubs), and
Architectural Snippets (UCM Plug-Ins)

Generator

no solution

Software Generated
Architect Software
Expertise Architecture

%ﬂ)- Based

Evaluator

Fig. 1. The process of generating and evaluating architectures.

structural aspects, such as flexibility, integrability, and modifiability, as well. However,
the notation that we use for architecture description needs to be extended to cater for
the latter aspects.

This paper is organized as follows. Section Bl introduces a running example used
to illustrate our approach. The major architectural design dimensions for this problem
are discussed in section Bl A feature-solution graph for the example system is given
in section [4l We discuss how the graph is used to generate and evaluate architectures.
Section [O] then elaborates several candidate architectures for the example system, us-
ing the knowledge captured in the feature-solution graph. Finally, section [0l gives our
conclusions.

2 Running Example: Resource Management (RM)
System

A generic Resource Management (RM) system is used as a running example. The con-
ceptual model of the RM system is depicted in Figure . The basic idea is that a
customer can reserve a resource that can be taken up later on. Resources are being de-
scribed in resource types. The RM system can be seen as an abstraction for a collection
of information systems that all share the concept of claiming resources. For instance,
in a hotel reservation system, the resources are rooms, whereas in a car rental system,
the resources are cars.
Typically, a RM system provides the following, basic functionality:

— Make/Cancel/Amend/Take-up Reservation;
— Add/Remove/Amend Resource or ResourceType.

A RM system is not necessarily restricted to serve one company. It is perfectly
possible to share resources amongst companies, or alternatively to acquire resources
from other companies as in the case of Business-to-Business (B2B) applications. A
resource type object can then include functionality for locating resources outside the
scope of a company. Yet another possibility is that a resource type object acts as a
broker or connects to a broker to find the best offer amongst a number of resource
providers.

Scenario-Based Generation and Evaluation of Software Architectures 131

[customer |——, Reservation |—,Resource |
| — -period: DateRange
-price: Money d
-serviceLevel: Agreement describes

1

15

.ResourceType

Fig. 2. Conceptual model of the Resource Management System.

3 Exploring Design Dimensions for the RM System

The 3-tier reference architecture is frequently used as a starting point in devising
architectures for classes of information systems, such as the RM system. As the name
suggests, the 3-tier reference architecture is composed of three layers:

— User Interface (UI) layer, alternatively called presentation or medium layer;
— Business Logic (BL) layer, alternatively called transaction or workflow layer;
— Data Management (DM), alternatively called application or abstraction layer.

The characteristics of the 3-tier architecture are flexibility, scalability, user inde-
pendence, availability, and low upgrade costs. On the downside, the architecture can
suffer from performance problems and may involve high initial costs [17].

Frequently, the layers are further divided, resulting in a n(> 3)-tier architecture.
These decompositions depend on both functional and non-functional requirements. We
will now discuss a number of alternatives for each layer. The intent is not to show
every conceivable alternative, but rather to indicate that even in a relatively simple
system, the design choices grow rapidly. In addition, we show that a decomposition in
one layer might have an impact on other layers. Hence we need a kind of architecture
generator to assure that the effects of a decomposition are properly effectuated in other
layers as well. This can be seen as the counterpart of aspect weaving in aspect-oriented
programming systems.

3.1 User Interface (UI) Layer

The UI layer is responsible for interacting with the user. The term user should be
interpreted in a broad sense. It could be a real user, interacting with, for instance, a
Graphical UI (GUI) or a Command Line Interface (CLI). In case of B2B interaction,
it could also be another system that manipulates reservations for particular resources
maintained by the system. A typical technique for B2B interaction is XML.

The logical UI layer may be split in two physical layers for WEB enabling. One
side runs the WEB browser, whereas the other side generates HTML pages and reacts
to HTTP requests. Offering public access to the system by using Internet technology
(e.g., XML and HTML) typically imposes non-functional requirements in the areas of
security and performance. As a result, the UI layer must be further refined to deal with
these aspects.

3.2 Business Logic (BL) Layer

The BL layer manages the interactions between the Ul and the DM layer. It can be
thought of as a workflow layer, realizing the automated business processes. The BL
layer abstracts away from media peculiarities, which are handled by the UI layer. It
rather provides media independent workflow and dialogue handlers (sometimes called
system services) with hooks to connect to the Ul layer. The BL layer is built on the

132 Hans de Bruin and Hans van Vliet

abstractions provided by the DM layer. Typically, the interface to the DM layer is
composed of an OO class model (e.g., a slightly less abstract class model than shown
in Figure B]) and a number of elementary, system services (e.g., elementary use cases
for basic object manipulations).

There is not always a real need for a BL layer. For simple applications that support
only elementary services, the BL layer can be skipped. In that case, the Ul layer calls on
the OO abstractions provided by the DM layer directly, and vice versa. Even if complex
services are provided by the system, the BL layer can be virtually non-existent. That
is, the BL and DM layer are effectively merged into one layer. This is typically the case
when a “pure” object-oriented approach is followed, where data and business logic are
tightly integrated into objects.

3.3 Data Management (DM) Layer
Many degrees of freedom exist for realizing the DM layer, to name a few:

— interface with a relational or object DBMS;
— use the persistency features of a programming language or library;
— read from and write to flat files.

The objects in the DM layer do not necessarily reside in the same system. As dis-
cussed before, resources may be shared (temporarily) amongst a number of systems,
as is the case in B2B applications. An object like resource type then fulfills the role
of resource locator or broker. The extended interpretation of resource type has impact
on other layers. For instance, a broker can request several resource providers to come
up with an offer within a certain period. In that case, a user will not get an imme-
diate response, but rather a notification (e.g., an e-mail) after the bidding period has
been elapsed. To put it differently, implementing broker functionality crosscuts the
functionality offered in the various layers.

4 Generating and Evaluating Architectures

The starting point for generating and evaluating architectures is first to derive feature
dependencies, which in their turn spark of solutions in the form of architectural snip-
pets to be placed in UCM stubs. The feature-solution dependencies are captured in
the feature-solution graph. We make a clear distinction between features (i.e., require-
ments) and the design particles that provide solutions by defining the following two
spaces:

Feature space describes the desired properties of the system as expressed by the
user.

Solution space contains the internal system decomposition in the form of a reference
architecture composed of components. In addition, the solution space may also
contain general applicable solutions that can be selected to meet certain non-
functional requirements.

A feature-solution graph for the RM system is given in Figure [3l It is composed
of the usual AND-OR decompositions to denote combinations and alternatives of fea-
tures and solutions. We use an AND decomposition to denote that all constituents
are included, an OR to select an arbitrary number of constituents, and an EXOR to
select exactly one constituent. Besides the AND-OR relationships, the graph contains
directed selection edges (represented by a solid curve that ends with a hollow pointer)
to establish the connection between features and solutions. Thus, a feature in the fea-
ture space selects a solution in the solution space. A solution may be connected by
selection edges to more detailed, general applicable solutions (e.g., design patterns).
That is, solutions are found by determining the transitive closure of selection edges
originating from the feature space.

133

Scenario-Based Generation and Evaluation of Software Architectures

\

(INON) eunouo) KX

A (Won) peziienss (WOl

n) sealnies
wayshs

—
(Won) sedinies
JSSENTETE]

Hox3 '
\ $5900y

(Won) Jeke a u
pajesbaju|

[CACRERIVEL]

)

4 _ (won) uondkiouz _D_ (Won) remens S

(Won) swaa

A (WON) Aouaisisiod
‘qr)/Bue ‘boid

> (

(0
Vﬁ‘
(WoN) seso1g g
Ho .

Jafe na

soepaly|
Wa-g

-~

HO

. Aunoeg

0n) seiid teiy ||| pereibelul lEEI
lé‘ (won) gam (]
T —

soBpBI|
ag-n

(Won) ainyeyyory
1911-¢

DY (Won) Jelrew-3

)ine A

‘bay sesn
N Sg
<l
O
— —
~
“bay sesn

aouBwWIONad

'bay 1esn
J
HoXT

|ouueyd . |louuey)
a|buig’

(Won) INX

y —

palgeus ‘s- pejeibou|

1ekeq 1N

soeds
uotantos

a - -qryBue ‘oig [N selid el
mom‘,L

Kouaysisiad

Jswabeue|y ereq .

anv.

sjufesjsuoy

[w o] wnpon] wen /spIEPUEIS
(R f“

& Aunaixel4

adA | 921nosay 10 a01nosey
pusy/aAoway/PpPY

uolerIasay

dn-exje | /pusiuy/jooueD/exe

G‘

pajqeus >.
EY ldl

[euonouny

aoeds
@anjead

sjuewaiinbay

Solution graph.

Fig. 3. Feature-

In some cases, it is useful to outrule a solution explicitly. This is done with negative

selection edges (represented by a dashed curve that ends with a hollow pointer). For

example, if we want high flexibility, then the BL layer should not be integrated in the
DM layer, since merging both layers makes it more difficult to adapt the business logic.

134 Hans de Bruin and Hans van Vliet

It is interesting to observe that the feature-solution graph contains tradeoff knowl-
edge. For example, the features “high flexibility” and “medium and high performance”
give rise to a clash in the sense that for flexibility reasons the BL and DM layer should
be separated, whereas for performance reasons they should be integrated. Other indi-
cations of tradeoff points can be found when two or more solutions in an OR decom-
position are selected simultaneously, that is, their selection stems from distinct feature
choices.

For understanding the process of generating and evaluating architectures, recall the
scheme given in Figure[Il The architecture generator is driven by the feature-solution
graph. Some features can be selected directly on the basis of the requirements. For
instance, we might require a high level of flexibility. As a result, the non-functional
requirement “Flexibility” in the feature space is set to “High”. The implication of this
decision is that the B and DM layer may mot be merged. For some requirements, the
required level of support is harder to determine. Consider, for example, performance.
A performance requirement might be that a “Make Reservation” takes less than a
second. However, it is not clear from the outset which performance level in the feature-
solution graph will satisfy the performance requirement. So as an initial guess, we set
the performance to “Low”, since this results in less constraints on the design than
higher performance levels. The software architecture then has to be evaluated in order
to assess whether the performance requirement is satisfied or not. If not, the outcome
of the evaluation process will result in setting the performance to a next level (i.e.,
“Medium”). The next step is to generate a new architecture, and so on, until all
requirements are satisfied, or we reach the conclusion that the requirements are too
strict.

To summarize the closed-loop process: The non-functional features can be set to a
required level, in our example ranging over “Low”, “Medium”, and “High”. A level for a
particular feature selects solutions, providing the basis for generating a candidate soft-
ware architecture. The required level of some features (e.g., flexibility in our example)
can be determined directly from the requirements, whereas others must be determined
from evaluations (e.g., performance). To put it differently, the feature levels are the
knobs with which the architecture can be fine-tuned. Notice that the feature-solution
graph is typically underspecified in the sense that not all (EX)OR decompositions
are necessarily connected by selection edges. In this way, we have created degrees of
freedom for generating design alternatives.

5 Elaborating Architectures for the RM System

In previous sections, we have sketched design dimensions and we have shown how re-
quirements and design alternatives can be connected in a feature-solution graph. We
are now in the position to show how the graph can be applied to actually generate
architectures for the RM system. To this end, we need some kind of architectural
description language, ideally a diagrammatic language that focuses on the larger, ar-
chitectural issues. The Use Case Map (UCM) notation suits this purpose well. It is a
scenario-based technique for capturing behavioral and to a lesser extent structural as-
pects of an architecture. UCMs can be used for analysis purposes. For instance, in [16]
a method is discussed for performance evaluations, and [6] discusses a scenario-based
approach for assessing behavioral system properties such as deadlock and reachability.

In the solution space of the feature-solution graph, some solutions in the decom-
position tree are marked as UCM. These solutions represent UCM stubs and plug-ins
with which an candidate architecture is composed. The principles are demonstrated by
taking the “Make Reservation” use case as an example.

5.1 Filling in the Layers

The 3-tier reference architecture is described in terms of a UCM, which is composed of
5 stubs (see Figure]). Three stubs correspond with the UI, BL, and DM layer, whereas

Scenario-Based Generation and Evaluation of Software Architectures 135

the remaining two model the interface between the UI-BL and the BL-DM layer. As
discussed before, a stub can be seen as a placeholder where architectural snippets (i.e.,
UCM fragments) can be plugged in. The default plug-ins for the stubs do no implement
functionality, they simply pass information from their start points to their end points.

N U outi

ouT2

BL-DM ouUT1
1

1
out2 N2

DM

v D

Fig. 4. Reference architecture.

UI layer We assume that a multi channel, WEB enabled Ul is selected (see Figure[5).
That is, multiple users may use the reservation system simultaneously.

Fig. 5. User Interface Layer.

BL layer The business logic for making a reservation is quite simple. It basically
passes on requests from the Ul layer to the DM layer and vice versa. To put it differently,
the default BL plug-in can be used for the time being.

136 Hans de Bruin and Hans van Vliet

DM Layer We will make use of a DBMS. For making a reservation, the DM layer
first checks the database whether the resources can be acquired or not. If they can be
acquired, the database is updated accordingly and the DM layer sends an acknowl-
edgement as a result, otherwise a negative acknowledgement is returned immediately.
These two scenarios are captured in the UCM shown in Figure [6]

BMS

Fig. 6. Data Management layer.

5.2 Feature Interaction

Assume that we require a high level of security. According to the feature-solution
graph, this translates into protecting access to the reservation system with a firewall
and using encrypted messages between the Ul layer and the rest of the system. The
process of composing the UI-BL interface with encryption and a firewall is shown in
Figure[d. In the first step, the UI-BL interface stub is replaced by encryption/decryption
components and a stub called UI-BL interface’. The latter stub in its turn is replaced
by a firewall component and the UI-BL interface” stub. The default behavior for a stub
is to do nothing, that is, there is a path from IN1 to OUT1 and another one from IN2
to OUT2.

Notice that the order of substitution is important. The architecture generator must
be prepared to generate different sequences. The approach of recursively replacing stubs
with plug-ins resembles the concept of composition filters used in the programming
language SINA [14]. The composition filter model consists of input and output filters
that surround an object and affect the messages sent to and received by that object.
Composition filters can be seen as objects in the role of proxies that perform additional
pre- and post-processing.

Now that the UI-BL interface layer is secured, the new architecture can be evalu-
ated to assess other non-functional requirements. Suppose that because of the security
measures that have been taken the performance degrades to an unacceptable level. This
means that the architecture must be enhanced in order to improve the performance.
One option is to skip the BL layer altogether and to integrate it with the DM layer.
But this has a negative impact on flexibility, and this solution is explicitly prohibited
if a high level of flexibility is required. Another option is to increase the amount of
parallelism in the BL layer, so that it can handle multiple requests simultaneously,
instead of serializing them. This solution is shown in Figure 8l

5.3 Crosscutting Layers

Suppose we want to extend the reservation system with B2B functionality in the sense
that resources may be acquired from other parties if they cannot be obtained from the
system itself (see Figure).

In this example, a broker is used to select a best offer amongst the parties involved.
This takes time, and for this reason, an AND-fork is introduced, with one branch
sending back a reply immediately indicating that the broker process is in progress,
and the other branch doing the actual brokering followed by updating the database
if a resource has been acquired. Notice that this splitting has impact on the BL and

Scenario-Based Generation and Evaluation of Software Architectures 137

UI-BL Jpterfyy

Encryptor/Decryptor | Encryptor/Decrypior 2
NI ouTl
v ourt
— | —

UL-BL Ipterface. 1
™
OL'__T- X o

N | ounl Firewall

ouTl

cryplor/Decryptor 1| Firewall Eneryptor/Decryptor 2 ourtl

INI

out2 N2

Fig. 7. Composition of design solutions.

Fig. 8. Parallelizing the Business Logic layer.

UI layer. An advance “brokering-in-progress” message can be sent as an immediate
response to the user, whereas the actual result of the broker process can be used for
sending a notification to the user, for instance, in the form of an e-mail (see Figure [10).

6 Concluding Remarks and Future Work

We have discussed a closed loop process for generating and evaluating software ar-
chitectures. At the heart of the process is the feature-solution graph, which combines
AND-OR feature and solution decompositions with (negative) selection relationships.
The feature-solution graph connects quality requirements with design alternatives. In
addition, it can be used to pinpoint tradeoffs between quality attributes such as flexi-
bility and performance, as shown in this paper.

The architectural description language that is being used to specify architectures is
actually of secondary importance. In this paper, we make use of Use Case Maps (UCM)
because of its scenario-based, visualization, and abstraction properties. Especially its
abstraction mechanism in the form of stubs and plug-ins provides the means to specify
extensible software architectures. Although UCMs are well-suited for modeling behav-
ioral aspects of a system, they are less equipped for structural aspects. For this reason,

138 Hans de Bruin and Hans van Vliet

Database Access DBMS

OuTI

ouTl

B2B Parties
B2B Broker

Fig. 9. Data Management layer extended with B2B broker functionality.

WEB Browser

IN1

ouT2

ouTl

e-mailer

l__/

Fig. 10. User Interface layer extended with an e-mailer.

the notation has to be extended, or alternatively other notations should be used be-
side UCM, to cover the full spectrum of architectural description. Nevertheless, in our
present work, UCM serves our purpose well and, in our opinion, it is only a minor step
to add new relationships between components along with appropriate viewpoints to
cater for yet unattended structural aspects.

In the near future, we want to investigate tool support for looping through the
generate-evaluate cycle. One possible solution is to encode the feature-solution graph
as Prolog facts, goals, and clauses. This requires that further attention is given to the
precise semantics of the constructs in the feature-solution graph. We can use the resolu-
tion mechanism of Prolog to produce solutions, i.e., software architectures that satisfy
the requirements set. To determine whether a certain Prolog goal is satisfied or not
translates to architecture evaluation with respect to a corresponding quality attribute.

Scenario-Based Generation and Evaluation of Software Architectures 139

In addition, intelligent help can be provided to guide the architect in preparing the
next iteration.

We envisage that the feature-solution graph can be further enriched with relation-

ships and annotations to accurately capture domain and architectural knowledge and
the connection between them. In this way, we build a body of knowledge that can be
applied to similar problems.

References

1.
2.

10.

11.

12.

13.

14.
15.

16.

17.

Paul G. Basset. Framing Software Reuse: Lessons from the Real World. Prentice
Hall, Upper Saddle River, New Jersey, 1996. Yourdon Press. [129

Don Batory, Gang Chen, and Tao Wang. Design wizards and visual programming
environments for GenVoca generators. IEEE Transactions on Software Engineer-
ing, 26(5):441-452, May 1998. [Z9]

R.J.A. Buhr. Use Case Maps as architecture entities for complex systems. IEEE
Transactions on Software Engineering, 24(12):1131-1155, December 1998. [129
R.J.A. Buhr and R.S. Casselman. Use CASE Maps for Object-Oriented Systems.
Prentice Hall, Upper Saddle River, New Jersey, 1996. [129]

L. Chung, D. Gross, and E. Yu. Architectural design to meet stakeholder re-
quirements. In P. Donohue, editor, Software Architecture, pages 545-564. Kluwer
Academic Publishers, 1999.

Hans de Bruin. Scenario-based analysis of component compositions. In Greg Butler
and Stan Jarzabek, editors, Proceedings of the Second Symposium on Generative
and Component-Based Software Engineering (GCSE’2000), Erfurt, Germany, Lec-
ture Notes in Computer Science (LNCS), pages 1-18, Berlin, Germany, October
9-12, 2000. Springer-Verlag. [34]

R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-based analysis of
software architecture. IEEE Software, 13(6):47-56, 1996. [12§]

R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere.
The architecture tradeoff analysis method. In Proceedings of the 4th International
Conference on Engineering of Complex Systems (ICECCS98), pages 68-78. IEEE
CS Press, 1998.

R. Kazman, M. Klein, and P. Clements. ATAM: Method for architecture evalua-
tion. Technical report, CMU/SEI-2000-TR-004, 2000.

Gregor Kiczales, John Lamping, Anurg Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
M. Askit and M. Matsuoka, editors, Proceedings of 11th European Conference
on Object-Oriented Programming (ECOOP’97), Finland, volume 1241 of Lecture
Notes in Computer Science (LNCS), pages 220-242; Berlin, Germany, June 9-13,
1997. Springer-Verlag. [129] [129]

M.H. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, and H. Lipson.
Attribute-based architectural styles. In P. Donohue, editor, Software Architecture,
pages 225-244. Kluwer Academic Publishers, 1999.

Axel van Lamsweerde. Requirements engineering in the year 00: A research per-
spective. In Conference Proceedings ICSE’00, pages 5-19, Limerick, Ireland, 2000.
ACM.

John Mylopoulos, Lawrence Chung, Stephen Liao, Huaiqing Wang, and Eric Yu.
Exploring alternatives during requirements analysis. I[EEFE Software, 18(1):92-96,
January 2001.

TRESE project. WWW: http://trese.cs.utwente.nl/sina/.

Nelson R. Rosa, George R.R. Justo, and Paulo R.F. Cunha. A framework for
building non-functional software architectures. In Proceedings of the 16th ACM
Symposium on Applied Computing (SAC’2001), pages 141-147, Las Vegas, Nevada,
USA, March 11-14, 2001.

W.C. Scratchley. FEwvaluation and Diagnosis of Concurrency Architectures. PhD
thesis, Department of Systems and Computer Engineering, Carleton University,
2000. 34

A. Umar. Object-Oriented Client/Server Internet Environments. Prentice Hall,
Englewood Cliffs, New Jersey, 1997. [31]

The Role of Design Components in Test Plan Generation

Jaehyoun Kim and C. Robert Carlson

Department of Computer Science, Illinois Institute of Technology
201 East Loop Road, Wheaton, Illinois 60187, U.S.A
{kimjaeh | carlson}e@iit.edu

Abstract. In this paper, we focus on the integration of a test plan generation
technique in the context of a use case design methodology. The foundation for
this approach lies in partitioning the design schemata into a layered architecture
of functional components called design units together with action matrices that
tabularly represent each use case scenario as a unique sequence of design units.
Based on these two concepts, we demonstrate how test plan generation and
software test metrics are developed. The action matrix with design unit
boundaries provides the test engineer with a constructive framework to follow a
bottom-up test process that proceeds from unit to integration and user
acceptance testing. The proposed software testing metrics are employed to
improve the productivity of the testing process through scenario prioritization.
This approach supports effective test plan generation based on sound and
systematic design procedures.

1. Introduction

As software systems have gotten more complicated, software development techniques
have needed to improve to cope with this complexity. Software development
methodologies [2, 7, 9, 18, 20] have been introduced to integrate design, code
development and testing processes. Each methodology provides a different approach
to software development. However, no single methodology provides a complete
solution [19]. This means that a process is needed that integrates and extends existing
methodologies.

One such effort is the Fusion Method [5] that combines and extends existing
methodologies such as CRC [1], OMT [18] and OOD [2]. It provides a logical and
systematic way of developing object-oriented software. Another effort is the Unified
Modeling Language (UML) that combines the best notations used in the three most
popular analysis and design methodologies, the Booch method [2], the Object
Modeling Technique [18], and the Object-Oriented Software Engineering (OOSE)
[7], to produce a single, universal modeling language that can be used with any
method. It is regarded as a language for specifying, visualizing, and documenting

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 140-152, 2001.
© Springer-Verlag Berlin Heidelberg 2001

The Role of Design Components in Test Plan Generation 141

object-oriented systems. However, these methodologies neglect the role of test
specification during the design phase.

This paper supports the thesis that test activity and test plan generation should be
initiated early in the design process to reduce the cost of testing and prevent problems
from propagating later on. A component analysis technique is introduced which
produces design units. Design units provide the framework to achieve a consistent
integrated approach to design, code generation, and testing. By applying the design
unit concept, we develop a bottom-up test plan generation process during design that
automatically carries over to code testing. Bottom-up test plan generation uses a
hierarchical action matrix that combines an action matrix and a design unit
characterization of each unit. This hierarchical action matrix with design unit
boundaries provides the test engineer with a constructive framework to generate a
bottom-up testing process that follows from unit to integration and user acceptance
testing. The test engineers can choose one or more of the design units based on their
preference for testing techniques. In addition, this paper describes software testing
metrics which the test engineers can use to guide the testing process.

This paper begins with a description of our software design methodology and the
concept of design units which it employs. The design of Withdraw Money and
Deposit Money use cases for an Automatic Teller Machine application are then
specified using interaction diagrams. The design unit concept is presented and applied
to interaction diagrams. A hierarchical action matrix is then introduced and a bottom-
up testing process is described. Finally, two software testing metrics are described.

2. Software Development Methodology

Use cases have been well established as one of the fundamental techniques for object-
oriented analysis and design. The use case driven approach has become popular as a
software development technique because of its capacity for capturing functional
requirements. It provides a powerful means of communication between different
kinds of people participating in software development — users, analysts, designers,
developers and testers. Carlson and Hurlbut [4, 6] proposed an adaptive use case
methodology for software development that leads to semi-automatic processes for
code generation and test plan generation. This methodology is enhanced by a test plan
generation technique [8] that employs an action matrix containing a collection of the
executable sequences of design units. This test plan generation approach improves the
productivity of the testing process through use case scenario prioritization and unit
decomposition.

This section briefly describes Carlson’s software design methodology [4]. The
methodology starts off with requirements analysis and produces a use case model in
which actors and use cases are identified and represented graphically. Interaction
diagrams are produced, one for each use case. The methodology then follows two
collaborative paths each for a unique purpose. They are the code generation path and
the test plan generation path, as illustrated in Figure 1. Both paths work from
interaction diagrams and employ the design unit concept as their standardizing,
coordinating and tracking element. The code generation path produces event-state

142 Jaehyoun Kim and C. Robert Carlson

tables that describe the behavioral changes of an object. Both interaction diagrams
and event-state tables are the key design elements used to generate a code skeleton.
The test plan generation path produces an action matrix that helps generate a
preliminary test plan and test scheme. The action matrix is intended to tabularly
represent each scenario as a unique sequence of design units. A key consideration of
this methodology is the notion of requirements tracking throughout the software
development process based on the modular design unit concepts introduced in the
next section.

T Event-State T Code
Table Skeleton

Interaction
Diagram

Use Case
Diagram

Action T Test
M atrix Plan

TT: STO
CO: POSED OF

Figure 1. Overview of Carlson’s Software Design Methodology

3. High-Level Design

To demonstrate the application of the design unit concept, we must first introduce an
example design specification produced by our methodology. We begin with
descriptions of a Withdraw Money use case and a Deposit Money use case drawn from
an automatic teller machine application. The analysis of the Withdraw Money and
the Deposit Money use cases results in the interaction diagrams shown in Figures 2
and 3, respectively.

3.1 Use Case Description

Withdraw Money Use Case: The use case Withdraw Money is initiated when a
customer inserts a cash card. This event is recognized by the interface object System
Panel and passed to the control object System Controller. The System Controller
reads its card number and requests the password.

When the customer enters the password, this event is recognized by the interface
object System Panel and passed to the control object System Controller. The System
Controller verifies the card number and password by sending a message to the service
object Bank. If approved, the System Controller requests the amount of cash. If not,
the System Controller requests the password again.

When the customer enters the amount, this amount is recognized by the interface
object System Panel and passed to the control object System Controller. The System
Controller checks the account balance with the customer Account. If the balance is
smaller than the amount requested, the transaction fails. If not, the System Controller

The Role of Design Components in Test Plan Generation 143

calculates the balance by sending a message to the service object Account. Then the
system returns money and prints a receipt.

Deposit Money Use Case: The use case Deposit Money is initiated when a customer
inserts a cash card. This event is recognized by the interface object System Panel and
passed to the control object System Controller. The System Controller reads its card
number and requests the password.

When the customer enters the password, this event is recognized by the interface
object System Panel and passed to the control object System Controller. The System
Controller verifies the card number and password by sending a message to the service
object Bank. If approved, the System Controller requests the amount of the money to
be deposited. If not, the System Controller requests the password again.

When the customer enters the deposit, the amount is recognized by the interface
object System Panel and passed to the control object System Controller. The System
Controller accumulates the amount to the current balance by sending a message to the
service object Account. Then the System Controller requests the envelope that
includes the deposited money. When the customer deposits the envelope, the system
prints a receipt and ejects the card.

3.2. Interaction Diagrams

At this point in the software development methodology, the designer produces an
interaction diagram for each use case. The interaction diagram represents an
interaction of objects through message passing between the objects in time sequence.
The notation used to depict an interaction diagram comes from [3] and utilizes several
extensions to the notation found in UML. The interaction diagrams for the Withdraw
Money and Deposit Money use cases are shown in Figures 2 and 3, respectively.

The interaction between the system and a customer combines four separate
dialogues, Insert Card, Enter Pin Number, Enter Amount, and Receipt, as shown in
Figure 2. Each external event starts a particular dialogue with the system that, in some
cases, is repeated. After receiving a response from the system, the actor decides
whether that dialogue with the system is to be repeated or a different dialogue is to be
initiated. The labels at the left side of the interaction diagram indicate that a dialogue
may be repeated. For example, label A means that the actor can reinitiate the Enter
Pin Number dialogue.

An analysis of the Enter Amount scenario yields two different use case scenarios,
Transaction Failed and Transaction Succeeded, shown in Figure 2. In the Enter
Amount scenario, when a customer enters the withdrawal amount, it is verified by the
system. If the balance is smaller than the amount requested, the Transaction Failed
scenario follows. Otherwise, the Transaction Succeeded scenario follows. In order to
describe multiple use case scenarios we use a graphical notation where numbers are
used to relate distinctive in-messages to their corresponding out-messages. For
example, in Figure 2 the System Controller sends the Transaction Failed message to
the actor when receiving a Reject message while the System Controller sends the
Calculation Balance message to the Account object when receiving an Accept
message.

144 Jaehyoun Kim and C. Robert Carlson

X System System Bank Account
(Customer) Panel Controller
Insert Card Insert Card
>
. RequestPin Number
Request Pin Number Bl 4
A Enter Pin Number
- Enter Pin Number - Verify Account
Invalid Account
l———————
1 R
Re-enter Pin Number 2 |agLalid Account
Re-enter Pin Number i -
A Request W ithdraw 1
Request W ithdraw Amount| g Amount 2
Enter W ithdraw Amount :
B Enter Withdraw Amoun!‘ Check Account Balance
> >
Reject =
3 [Accept
Transaction Failed 1 |- P
B Transaction Failed ¢ 3 4 Calculation Balance >
Transaction Succeed - Return Calculation Balance
Transaction Succeed <
Receipt .
D Receipt >
N . bl
Print < Print

Figure 2. Withdraw Money Use Case Interaction Diagram

* System System Bank Account
(Customer) Panel Controller

Insert Card

Insert Card -

. Request Pin Number
= Request Pin Number ———eduestEn Rumber

Enter Pin Number
A Enter Pin Number - Verify Account
Invalid Account,

1 .
. Re-enter Pin Number 2 leg—Valid Account
A Re-enter Pin Number - N 1
<= Request Deposit
Request Deposit Amount - Amount 2
Enter Deposit-Amount = Enter Deposit-Amount
» Accumulate Amount
o >
Amount Recorded
Request Envelope -
< Request Envelope -t

Enter Envelope

Enter Envelope »
Print Receipt < Print Receipt

Figure 3. Deposit Money Use Case Interaction Diagram

4. Design Units

Each interaction diagram can be partitioned algorithmically into a layered architecture
of functional components called design units. Several partitioning strategies are
possible, each providing different properties at the boundary points between adjacent

The Role of Design Components in Test Plan Generation 145

design units. These properties can be exploited by our test generation strategies. The
goal of these design units is to maximize the ease of generating code, integrating
automatic testing techniques, and managing subsequent changes. Each design unit is
described below:

Method Unit: Method executed by an object in response to a message.

The simplest choice is to let each method be a design unit. Figure 2 has twenty-eight
method units, as listed in the left column of Table 1. Each method represents a
distinctive method unit in the interaction diagram such as Insert Card, Request Pin
Number, Enter Pin Number, Verify Account, Invalid Account, Re-enter Pin Number,
Valid Account, Request Amount, Enter Amount, Check Account Balance, Reject,
Accept, etc. Method units provide a good choice during unit testing.

State Unit: Sequence of methods executed during the interval bounded by
consecutive states as defined by an algorithmically defined event-state table.

State units can be algorithmically identified in several ways [3]. To simplify the
discussion, we have chosen to focus on a state model for the System Controller
control object based on the messages received by and sent from it. A state unit can
be characterized by a state pair [Si, Sj], where Si is a current state and Sj is a
subsequent state. Each state pair can be enhanced at design time by predicate
conditions associated with each of these states. Such information is useful when state
based testing techniques are applied. A state unit consists of multiple method units. In
the interaction diagram shown in Figure 2, nine state units have been algorithmically
identified. For example, when receiving the event Insert Card in state SO, the state of
the control object is changed to state S1 and the action Request Pin Number is
initiated. In state S1, the event Enter Pin Number can occur subject to a possible
constraint on state S1 over the number of time it can be attempted. This constraint
could form the basis for a possible state S1 test.

Maximal Linear Unit: Sequence of methods executed during the interval bounded
by consecutive choices, either actor or object choices.

A maximal linear unit consists of one or more state units. A maximal linear unit is the
same as a dialogue unit if no choice nodes exist. The MLUs described below focus on
the state units associated with the System Controller control object. In Figure 2, a
choice node for the System Controller control object occurs when it receives either the
Invalid Account or Valid Account message from the Bank object and either the Reject
or Accept message from Account object. Thus, the maximal linear units for the
Withdraw Money use case are [Insert Card, Request Pin Number], [Enter Pin Number,
Verify Account], [Invalid Account, Re-enter Pin Number], [Valid Account, Request
Amount], [Enter Amount, Check Account Balance], [Reject, Transaction Failed],
[Accept, Calculate Balance, Return Current Balance, Transaction Succeed], and
[Receipt, Print]. Maximal linear units provide the test engineer with the elements with
which to apply straight line testing techniques.

Dialogue Unit: Sequence of methods bounded by input from an actor and the
system’s response to that actor.

A dialogue unit consists of one or more maximal linear units. In the interaction
diagram shown in Figure 2, we can identify all possible paths from the actor and the
system’s response to the actor. The dialogue units include [Insert Card, Request Pin
Number], [Enter Pin Number, Verify Account, Invalid Account, Re-enter Pin Number],

146 Jaehyoun Kim and C. Robert Carlson

[Enter Pin Number, Verify Account, Valid Account, Request Amount], [Enter Amount,
Check Account Balance, Reject, Transaction Failed], [Enter Amount, Check Account
Balance, Accept, Calculate Balance, Return Current Balance, Transaction Succeed],
and [Receipt, Print]. Dialogue units are useful for establishing user acceptance test

specifications.

Table 1. Enumeration of Design units — Withdraw Money Use Case

Method Unit State Unit MLU Dialogue Unit
Insert Card 2
S0, 81 MLU1 DUl
Request Pin Number 2
Enter Pin Number 2
S1/83, S2 MLU2 Du2.2
Verify Account
DuU21
Invalid Account DU2
> S2,83 MLU3
Re-enter Pin Number
Valid Account
> S2,84 MLU4 Dbu2.2
Request Withdraw Amount
Enter Withdraw Amount 2
54/6, S5 MLUS DU3.2
Check Account Balance
- DU3.1
Reject
> S5, S6 MLU6
Transaction Failed
Accept bus
S5, 87
Calculate Balance
MLU7 DU3.2
Return Current Balance
7 §7,88
Transaction Succeed
Receipt
> S8, S0 MLU8 DU4
Print
Table 2. Enumeration of Design Units - Deposit Money Use Case
Method Unit State Unit MLU Dialogue Unit
Insert Card 2
S0, s11 MLU11 DU11
Request Pin Number 2
Enter Pin Number 2
$11/813, 812 MLU12 bu12.2
Verify Account
DU12.1
Invalid Account
S12, 513 MLU13 DU12
Re-enter Pin Number 2
Valid Account
S12, S14 MLU14 Dbu12.2
Request Deposit-Amount 2
Enter Deposit-Amount 2
S14, 815
Accumulate Amount
MLU15 DU13
Amount Recorded
S15, S16
Request Envelope 2
Enter Envelope 2
S16, SO MLU16 DU14
print 2

Table 1 and 2 summarize the different design units that can be obtained
algorithmically from the interaction diagrams for the Withdraw Money and Deposit
Money use cases, respectively. Each column represents one of the above design unit

The Role of Design Components in Test Plan Generation 147

categories. Each event in the interaction diagram is represented by a method unit. The
second column identifies the sequence of methods that define a state pair. For
example, the method units, Insert Card and Request Pin Number, are associated with
the state pair [SO, S1]. Dialogue units DU1, DU2, DU3 and DU4 shown in Table 1
represent a basic interaction between the actor and the system. Dialogue units can be
further decomposed. For example, DU2 consists of two subdialogues DU2.1 and
DU2.2 while DU3 consists of two subdialogues DU3.1 and DU3.2.

5. Testing

Software testing is a critical element to verify that a correct system is being built.
Glen Myer [13] states “Testing is a process of executing a program with the intent of
finding an error.” It means that testing activity is initiated after completion of the
software development process. However, McGregor [10] noted that “There are a
number of products of the software development process that should be tested,
including: requirement models, analysis and design models, architecture individual
components and integrated system code.” It means that a good test plan should
establish test specification earlier in the software development process. Our approach
emphasizes the generation of test specifications in the design stage while traditional
software testing concentrates on testing program source code.

5.1 Test Plan Generation

In an action matrix, each row represents a use case scenario and each column
represents one of the design units identified for that application. Each scenario
includes an ordered collection of design units. Figure 4 shows messages associated
with each state unit identified for the Withdraw Money and Deposit Money use cases
in the automatic teller machine application.

Index State Unit
Al Insert Card / Request Pin Number
Bl Enter Pin Number / Verify Account Index State Unit
Cl Invalid Account / Re-enter Pin Number A2 Insert Card / Request Pin Number
D1 Valid Account / Request Withdrawal Amount B2 Enter Pin Number / Verify Account
El En}er Withdrawal Amount / Check Account Cc2 Invalid Account / Re-enter Pin Number
F1 Reject / Transaction Failed D2 Valid Account / Request Deposit Amount
Gl Accept / Calculation Balance E2 Enter Deposit-Amount / Accumulate Amount
H1 Return Current Balance / Transaction Succeed F2 Amount Recorded / Request Envelope
11 Receipt / Print G2 Enter Envelope / Print

Figure 4. State Unit Index Table for Withdraw Money and Deposit Money Use Cases

148 Jaehyoun Kim and C. Robert Carlson

The action matrix is generated algorithmically from the interaction diagram [8].
The hierarchical action matrix integrates the hierarchy of design units into the action
matrix tables. In the hierarchical action matrix, each scenario is represented by a row
and design units are represented by a column. The top rows of the hierarchical action
matrix contain a hierarchical composition of the design units from state units to
dialogue units. Each number i in a cell shown in Figure 5 and 6 indicates that the
particular scenario performs the specific state unit, shown in Figure 3 (a) and (b), as
the i th step in the scenario. The symbol (+) in the design units is used to denote that
the sequence of state units (e.g., (2, 3) in the Invalid Account Scenario and (4, 5) in
the Transaction Failed Scenario) is repeated in DU2.1 and DU3.1. This table is used
to select testing techniques, their scope and order of application.

DU1 DU2 DuU3 Du4
Design Units DU2.2 DU2.2 DU3.2 DU3.2
pu2.1* pus.l *

MLU1 MLU2 MLU3 MLU4 MLU5 MLU6G MLU7 MLU8
Use Case Scenarios Al B1 C1 D1 El F1 Gl H1 11
Withdraw Succeed Scenario 1 2 3 4 5 6 7
Invalid Account Scenario 1 2 3
Transaction Failed Scenario 1 2 3 4 5

Figure 5. Hierarchical Action Matrix for a Withdraw Money Use Case

DU11 DuU12 DU13 DU14
Design Units
DU12.2 DuU12.2
pu121 *
MLU11 MLU12 MLU13 MLU14 MLU15 MLU16
Use Case Scenarios
A2 B2 Cc2 D2 E2 F2 G2
Deposit Succeed Scenario 1 2 3 4 5 6
Invalid Account Scenario 1 2 3

Figure 6. Hierarchical Action Matrix for a Deposit Money Use Case

Different testing techniques may be appropriate depending on the choice of design
units. Each column shown in Figure 5 is equivalent to a state unit shown in Figure 4
(a) and suitable to specific unit testing techniques. Method unit testing depends on the
object type, e.g., interface, control, or service object. State based testing techniques
can be used with state units. After executing unit testing, integration testing is begun.
Integration testing techniques can be used with a use case unit or an ordered list of use
case scenarios. Maximal linear units rely on path testing techniques. User acceptance
testing can be used with dialogue units or use case units. Based on this choice, the test
plan contains a set of design units together with appropriate unit testing technique to
be applied to these units.

The Role of Design Components in Test Plan Generation 149

5.2 Software Test Metrics

Software test metrics are used to evaluate the use case scenarios defined by the action
matrix so that a test plan will emerge which improves the productivity of the testing
process. The purpose of these metrics is to “optimize” the order in which the
scenarios defined by the rows of the hierarchical action matrix are tested. This
approach was adapted from Musa’s work on Operational Profiles [15, 16]. Musa’s
approach assumes that the test engineer has sufficient insight to assess the “criticality”
of state units and assign weighting factors to the elements of the action matrix [12,
14]. The software test metrics described in this paper focus on the design units based
reusability properties of the scenarios.

5.2.1 Most Critical Scenario. The first metric is an adaptation of Musa’s ‘most
critical operational profile’ approach [15, 16]. It assumes that the designer can make
these judgments and establish weight factors based on the “criticality” of state units.

Figure 8. Use Case Dialogue Map for a Deposit Money Use Case

Figures 7 and 8 show use case dialogue maps [8] to apply the calculation of total
probability of occurrence in each use case scenario. Figure 7 shows a use case
dialogue map for the Withdraw Money use case while Figure 8 shows a use case
dialogue map for the Deposit Money use case. The Withdraw Money use case consists
of three different scenarios. The direct path of “Withdraw succeed scenario’ consists
of the sequence of state units ‘Al -> B1 -> D1> E1 -> G1 -> H1 -> I1’ with the
amount of weighted values shown in Figure 7. The direct path of ‘Invalid account
scenario’ in the Withdraw Money use case consists of the sequence of state units ‘Al -
> B1 -> C1’ with the amount of weighted values shown in Figure 7. The direct path of
“Transaction failed scenario’ consists of the sequence of state units ‘Al -> B1 -> D1 -
> E1 -> F1’ with the amount of weighted values shown in Figure 7. The direct path of
‘Deposit succeed scenario’ consists of the sequence of state units ‘A2 -> B2 -> D2 ->

150 Jaehyoun Kim and C. Robert Carlson

E2 -> F2 -> G2’ with the amount of weighted values shown in Figure 8. The direct
path of ‘Invalid account scenario’ in the Deposit Money use case consists of the
sequence of state units ‘A2 -> B2 -> C2’ with the amount of weighted values shown
in Figure 8.

For all state units within a particular use case scenario of the Withdraw Money and
Deposit Money use cases, we can calculate total probability of occurrence as follows:
(1) In case of a Withdraw Money use case
Withdraw succeed scenario=1*1*0.7*1*08*1*1*1=0.56
Invalid account scenario=1*1*0.3 *0.2 = 0.06
Transaction failed scenario=1*1*0.7*1*0.2*0.5 = 0.07
(2) In case of a Deposit Money use case
Deposit succeed scenario=1*1*07*1*1*1*1=0.7
Invalid account scenario=1*1* 0.3 *0.2 = 0.06

For the Withdraw Money use case, the metrics produce the following ranking of the
three scenarios: variant ‘withdraw succeed scenario’ (0.56), variant ‘invalid account
scenario’ (0.06), and variant ‘transaction failed scenario’ (0.07). The three scenario
variants would be tested in the order: withdraw succeed scenario, transaction failed
scenario, and invalid account scenario.

In case of the Deposit Money use case, the metrics produce the following ranking
of the two scenarios: variant ‘Deposit succeed scenario’ (0.7) and variant ‘Invalid
account scenario’ (0.06). The two scenario variants would be tested in the order:
‘Deposit succeed scenario” and ‘Invalid account scenario’.

Design Units DU1 DU2 DU3 DU4
AND DU2.2 DU2.2 | DU3.2 DU3.2
Action Units
pu2.1* pu3s.1*
MLUL [MLU2 | MLU3 | MLU4 [MLU5 | MLU6 MLU7 MLUS8
Use Case Scenarios
Al B1 c1 D1 E1 F1 G1 H1 11

Withdraw Succeed Scenario 1 2 3 4 @ @ @
Invalid Account Scenario 1 2 @ < > < >

Transaction Failed Scenario 1 2 3 4 @

Figure 9. Most Reusable Component (Withdraw Money Use Case)

Design Urits DU11 DU12 DU13 DU14
_AND DU122 | DU122
Action Units
puU121 *
MLU11 MLU12 MLU13 MLU14 MLU15 MLU16
Use Case Scenarios
A2 B2 c2 D2 E2 F2 G2

Deposit Succeed Scenario T 2 @ @ @ @
Invalid Account Scenario \;/ \g/ @

Figure 10. Most Reusable Component (Deposit Money Use Case)

The Role of Design Components in Test Plan Generation 151

5.2.2 Most Reusable Components. Figures 9 and 10 employ three different types of
geometric figures: a rounded rectangle, a diamond, and an oval. The oval implies the
particular component is used just one time on a single one of the paths. The diamond
implies the component is used in two paths. The rounded rectangle implies the
component is used in three paths. The reusability weight is defined as the number of
paths that use the particular component. The values can indicate whether a particular
action unit is reusable or not. Therefore, Figure 11 summarizes the reusability rating
of each scenario in the Withdraw Money and Deposit Money use cases.

The analysis in Figure 11 (a) indicates that the “Withdraw succeed scenario’ has
the highest reusability rating (13 =3 *2 + 2 * 2 + 1 * 3). This indicates that it makes
the highest use of state units that it shares with other scenarios. Hence, testing the
‘Withdraw succeed scenario’ first might have the highest benefit when the other paths
are tested later because the highest number of shared state units have already been
scenario tested.

Scenarios Withdraw Invalid Transaction
eighte Succeed Account Failed
alue Scenario Scenario Scenario

Scenarios Deposit Invalid
3 2 2 2 eighted Succeed Account
alue Scenario Scenario

<>2 2 2 <>2 2 2
Ol 3 1 1 Ol 4 1

Total W eight 13 7 11 Total Weight 8 5

(a) (b)
Figure 11. Evaluation Table for Use Cases (a) Withdraw Money (b) Deposit Money

6. Conclusion

In this paper, we explored the premise that in a mature software testing processes,
design can be used to drive software development and testing as coordinated activities.
We introduced the concept of design units identified by component analysis of design
in order to achieve a consistent and integrated approach to design and testing. The
design units form a hierarchical approach to unit testing which integrates user
acceptance and scenario testing techniques as well. The software testing metrics
described in this paper provide the test engineer to optimize the order in which both
the units and scenarios defined by the action matrices are executed. It is to minimize
test cases, to maximize the reuse of well-tested existing paths, and to improve the
productivity of the testing process through scenario prioritization.

References

1. Beck, K. and Cunningham, W., “A Laboratory for Teaching Object-Oriented
Thinking”, In OOPLSA ’89, pp. 1-6, Addison-Wesley, Reading, MA, 1989.

152

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

Jaehyoun Kim and C. Robert Carlson

Booch, G., Object-Oriented Design with Applications, Benjamin/Cummings,
Redwood City, CA, 1991.

Byun, K., A Use Case Based Approach to Algorithmic Event-State Table
Generation, Ph.D. Thesis, Illinois Institute of Technology, 1999.

Carlson, C. R., “Object Oriented Modeling and Design”, Lecture Notes, Illinois
Institute of Technology, 1999.

Coleman, D., et al., Object-Oriented Development: The Fusion Method, Prentice
Hall, Englewood Cliffs, NJ, 1994,

Hurlbut, R., Managing Domain Architecture Evolution through Adaptive Use
Case and Business Rule Models, Ph.D. Thesis, Illinois Institute of Technology,
1998.

Jacobson, 1., et al., Object-Oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley/ACM Press, Reading, MA, 1992.

Kim, Y. and Carlson, C. R., “Scenario Based Integration Testing for Object-
Oriented Software Development”, Proceeding of Eighth Asian Test Symposium
(ATS’99), pp. 283-288, November 1999.

Martin, J. and Odell, J., Object-Oriented Analysis and Design, Prentice Hall,
Englewood Cliffs, NJ, 1992.

McGregor, J., “Planning of Testing”, Journal of Object-Oriented Programming,
pp.82-85, February 1997.

McGregor, J. and Korson, T., “Integrating Object-Oriented Testing and
Development Processes”, Technical Report, Software Architectures Inc., 1994.
Mealy, G. H., “A Method for Synthesizing Sequential Circuits”, Bell System
Technical Journal, Vol. 34, 1955.

Meyer, G. J., The Art of Software Testing, John Wiley & Sons, New York, 1979.
Moore, E. F., “Gedanken Experiments on Sequential Machines”, In Automata
Studies, Princeton University Press, Princeton, NJ, 1956.

Musa, J. and Everett, W., “A Software Reliability Engineering Practice”, IEEE
Computer, Vol. 26, No. 3, pp. 77-79, March 1992.

Musa, J., “The Operational Profile in Software Reliability Engineering: An
Overview”, AT&T Bell Labs, NJ, 1993.

Object Management Group, “OMG Unified Modeling Language Specification
(draft)”, Version 1.3, June 1999.

Rumbaugh, J., Object-Oriented Modeling and Design, Prentice Hall, Englewood
Cliffs, NJ, 1991.

Saxena, G., A Framework for Building and Evaluating Process Maturity
Models, Ph.D. Thesis, Illinois Institute of Technology, Chicago, IL 1999.

Shlaer, S. and Mellor, S., Object Lifecycles: Modeling the World in States,
Prentice Hall, Englewood Cliffs, NJ, 1992.

Retrieving Software Components Using Directed
Replaceability Distance

Hironori Washizaki and Yoshiaki Fukazawa

Department of Information and Computer Science, Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
{washi, fukazawa}@fuka.info.waseda.ac.jp

Abstract. In component-based software development, the mechanism
by which the software components which best satisfy a user’s query are
retrieved is indispensable. However, conventional retrieval methods can-
not evaluate the total characteristics of a component, because they con-
sider a single aspect of the component or require an additional descrip-
tion. In this paper, we propose a new distance metric, “directed replace-
ability distance” (DRD), which represents how different two components
are in detail from the viewpoint of structure, behavior, and granularity.
We have developed a retrieval system which uses DRD as a measure of
the difference between a user’s query prototype component and the com-
ponents stored in a repository. In this paper, we outline the concept of
DRD and the usefulness of our retrieval system.

1 Introduction

Recently, software component technology, which is based on the development
of components in combination, has attracted attention because it is capable of
reducing development cost[I]. A software component is a unit of composition
with contractually specified interfaces, provides a certain function, and can be
independently exchanged. In a narrow sense, the software component is defined
as that which is distributed in the form of an object code (binary code) without
source codes. According to this definition, the internal structure of the software
component is not available to the public. In this paper, “software component”
is used according to this definition. Since it is natural to model and implement
components in an object-oriented paradigm/language[l], we limit this study to
the use of the OO language for the implementation of components.

Researchers have noted that a technique for retrieving and selecting a compo-
nent which satisfies a requirement specification has not yet been established[2].
Since software can be distributed over the Internet, the reuse of components
over the Internet is emerging[2]. Today, a component repository and a retrieval
mechanism which appropriately supports the retrieval of components from the
repository are necessary to enable such reuse.

The important characteristics of components are the following|[3]:

— Structure: the internal participants and how they collaborate

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 153-[I62] 2001.
© Springer-Verlag Berlin Heidelberg 2001

154 H.Washizaki and Y.Fukazawa

— Behavior: stateless behavior and behavior which relates to the states
— Granularity: the component size and the classification

Encapsulation: how much design/implementation decisions are hidden
Nature: main stage used in the development process

Accessibility to Source Code: the modifiability of the component

We aim to reuse components that are mainly distributed in the form of the
object code, and the components used at the implementation stage. Therefore,
in designing the retrieval mechanism, it is not necessary to consider the two
characteristics “nature” and “accessibility to source code”. “Encapsulation” is
important because it is directly related to the testability of the component. How-
ever, users retrieve a component generally on the basis of its functionality, and
it is possible to verify the encapsulation of a component after retrieval. There-
fore, “structure”, “behavior”, and “granularity” can be considered important
characteristics of the component in terms of retrieval.

2 Component retrieval

Conventional retrieval approaches for the software component which is in the
wide sense can be classified into four groups: automatic extraction approach
(text-based approach), specification-based approach, similarity distance-based
approach and type-based approach.

The automatic extraction approach is based on the automatic extraction of
structural information from components[]. The user’s queries are expressed as
keywords corresponding to the names of interfaces, components, and so forth.
This approach is effective in the case that all source codes of the components are
available. However, in the case that the source codes are not available, as assumed
in this paper, the extracted information is insufficient for the retrievallf).

The semi-formal specification-based approach is based on catalog information
of the components[2]. The user’s queries are given as keywords which correspond
to a specification of the catalog. In addition, the formal specification-based ap-
proach, which uses semantic description of the component’s behavior, has been
proposed[fi]. In general, the description uses the first-order predicate logic, so
this approach guarantees precise adaptability to the user’s query. However, the
preparation costs of both approaches become very large because the additional
descriptions are necessary.

The similarity distance-based approach is based on the similarity between a
user’s query and the component stored in the repository. There are two major
approaches in the similarity evaluation method: an approach using the class
inheritance relation in OO language[7] and an approach using the similarity of
element names (names of interfaces, etc.)[d]. The user’s queries are given by a
prototype of the component which satisfies the user’s requirement.

The type-based approach is based on component type and component inter-
face type[§]. The user’s queries are given by type information expected to realize
the user’s requirement. Search results are classified according to adaptability, for

Retrieving Software Components Using Directed Replaceability Distance 155

example, exact match and generalized match, but more detailed ranking with
each match set cannot be obtained.

These conventional approaches consider only a single characteristic of the
component when retrieving. Therefore, these approaches cannot evaluate the to-
tal semantic adaptability of the component|2]. The retrieval mechanism should
be able to consider two or more characteristics simultaneously when retrieving.
In addition, not all components circulated over the Internet have additional spec-
ification descriptions[5]. Therefore, the retrieval mechanism should not require
any additional information other than the components themselves.

3 Directed Replaceability Distance

We propose directed replaceability distance (DRD) as a distance metric to repre-
sent semantically the degree of difference between two components. In a situation
in which component ¢, is used and the system requirements are the same before
and after the replacement, when ¢, is replaced with another component c;, the
parts where ¢, is used must be modified. DRD(cq, ¢s) indicates the necessary
adaptation cost in such a situation. At this time, considering the surroundings
of ¢4, it is assumed that all interfaces of ¢, are uniformly used.

First, we define three primitive distances: the structural distance DRDg, the
behavioral distance DRDpg and the granularity distance DRD¢. These primitive
distances are normalized between 0 and 1, and correspond to respective charac-
teristics of the component under consideration: the structure, the behavior and
the granularity. Then, DRD is defined as a combination of DRDg, DRDpg, and
DRDg¢ based on the dynamically weighted linear combination model[9]. As a
result of using this combination model, the degree of consideration for each of
the three characteristics can be changed according to the user’s attention by
changing assignment of weight values. DRD(cy, ¢,) is defined as follows.

DRD(cq,cs) := wiDRDg(cq,cs) + waDRDg(cq, ¢s) + wsDRDg(cq, cs)
2:3:1 w; = 1, w; Z 0

The structural distance DRDg reflects the difference between components’
names and the difference between the components’ interface structures (signa-
tures). For example, there are three interfaces, I; ~ I3, shown in Fig.[M and I, is
assumed to be used. I5 is different in terms of the argument type compared with
I,. However, considering numeric types, the accuracy of int is higher than that
of short. Therefore, it is expected that the necessary adaptation work for inter-
face replacement of I; with I is almost completed with the narrowing type cast
for parts where I7is used. On the other hand, compared with I, I3 is markedly
different in terms of the name and the argument type. Therefore, the adaptation
cost when replacing I; with I is smaller than that when replacing it with I3.
DRDg can be calculated from the sets of such interface structural differences
which components have before and after replacement.

The behavioral distance DRDp reflects the difference between the compo-
nents’ interface execution results and the difference between the types of the

156 H.Washizaki and Y.Fukazawa

structural example behavioral example
I, : void setData(int aData) I : { data = aData, }
I : void setData(short aData) I; : { data = new Integer(aData); }
Is : void setBar(String aData) Ir: {}

Fig. 1. Examples of interfaces with different structures/behaviors

components’ readable properties, whose value changing can be observed. Ac-
tiveX[11] and JavaBeans[12] are the component systems which support the read-
able/writable property mechanism using the IDL definition or the naming con-
ventions. For example, there are three interfaces, I{ ~ If, shown in Fig. [and
I is assumed to be used. It is also assumed that these three interfaces have
a common interface declaration I;, and data is a readable property using the
introspection mechanism provided by the target component system. When I is
invoked, the value change of the property whose type is int is observed. In the
case of I}, the type of the changed property is Integer. Therefore, I] and I} are
considered to be similar in terms of behavior because int and Integer as types
are very similar. However, the invocation of I does not bring about any changes
in the readable properties. Therefore, I} is significantly different in terms of be-
havior compared with Ij. DRDp can be calculated from the sets of interface
behavioral differences which components have before and after replacement.

The granularity distance DRD¢ reflects the difference between component
sizes and the difference between component interface execution times. For exam-
ple, there are three components, Bar (component size: 10kbytes, total interface
execution time: 10msec), Car (15k,20) and Dar (100k,150). Bar is assumed
to be used. Bar and Car are similar in terms of component size and the total
execution time of interfaces. On the other hand, the values for Dar are large
compared with those for Bar. Therefore, if the resource constraint is severe, the
replacement of Bar with Dar is more difficult than the replacement with Car.
DRDg can be calculated from the component granularity difference and the set
of interface granularity differences.

In the following, only the structural distance is described precisely. The struc-
tural distance is defined as follows, using the word distance dw for the names of
components and the element set distance ds for the sets of interface structures.

structure of component Cg, interface structure Ig

Cys ::= {name : String, inter faces : {i1 : Ig,....in : Is}} c¢q4,¢5: Cs

¢q = {name = ny, flméerfa)cesd:(iSq})cs = {name = ng, inter faces = iss}
w(ng,ns)+2ds(isq,iss

DRDg(cq,¢s) = s -

The word distance dw(wg, ws) between words w, and w; is defined as follows,
using the longest common substring w,. Here, [W] is the length of the word w.

[ws|(Jwql+|ws | =2|wp))
[ws |+ 1) (Jwg [+]ws|+2]ws [[wp)

dw(wg, ws) = (or 1 (if w, does not exist)

The element set distance ds(Ry, Rs) between element sets, which are R, as
the one replacement before and R; as the one replacement after, is defined as

Retrieving Software Components Using Directed Replaceability Distance 157

follows. Here, |R| is the number of R elements. First, f; selects the mapping
between R, and R, with the minimum total distance dz(g, s) according to the
types of ¢ and s for all pairs < ¢,s >. Second, in the case that |Rq| > |Rs|, f2
creates ordered pairs < ¢/,root > with the root, according to the type of ¢, for
all elements ¢ in the remainder of R, after calculating f1. However, in the case
that |Rq| < |Rs|, fs creates ordered pairs < root, s’ > with the root, according
to the type of s, for all elements s’ in the remainder of R after calculating
f1. Finally, ds summarizes f; ~ fs3, and divides the total by the largest value
between |Ry| and |Rs].

The situation where the number of targets is greater than the number of
queries is more desirable than that where the number of targets is less than
the number of queries. The definition of ds satisfies this desirability, because
dxz(gq,root) > dx(root,q), always. The distance dx(q,s) is dis(q,s) or dt(q,s),
according to whether the types of ¢ and s are the interface structure (Is) or the
normal type ().

Ry={q1:2,..;qm: 2}, Re={s1:2,...,8,: 2}
() t=Miag(q,s) X< g s>e(r,, k] 44)
fa(Rg, Ry) = Zq/Gqu(RqﬁRs) dx(q',root) (|Rq| > |Rs|)
[s() 5= ger.— (RgNRs)dz(root ') ([Rq| <|Rs])
(

_ fi(Rq,Rs)+f2(Rq,R)+f3(Rq,Rs)
ds(Rq, Rs) ::= mar(Ro TR

root = {name = null, signature = {} =< root >} (x = Ig)
00 < root > (:z: =1t)

The interface structure Ig is composed of the name of the interface and the
functional type of the signature. The interface structural distance dis(iq, is) be-
tween interface structures i, and i, is defined as follows, using the word distance
dw between the names of interfaces and the functional distance df between the
signatures of interfaces.

Is = {name : String, signature : F} i4,is: Ig

iq = {name = ng, signature = sig,} is = {name = ns, signature = sig,}
. o oy L dw(ng,ng)+2df (sigq,sigs)

dis(ig,is) = < 3 <

The functional distance df (fy, fs) between functional types f, and fs is de-
fined as follows, using the element set distance ds for arguments and using the
normal type distance dt for the return value.

functional type F ::= {params : {t1 : t,....t, : t} — return:t} fq,fs: F
= {params = p; — return =rq} fs = {params = ps — return =rg}
) o e

The value type (int, ...), the object type (Object, ...), and the value-wrapper
type (Integer, ...) are enumerated as the normal type. Using the object-oriented
type system[I0)], these types form a single Is-a graph which makes < root >> the
top. We use the subclass relation as the subtyping relation of the object type.

158 H.Washizaki and Y.Fukazawa

Since the value-wrapper types have primitive values as the value types, we use
the subset subtyping of those primitive values as the subtyping relation of the
value-wrapper type. Figl2 shows a standard Is-a graph in Java language.

[E<roois) ————— e Ix)=1
[Objegt |- ——————————— 3 —— [(x)=2
[Void] [Date | [..] example
alue-wrapper type./ object type e

Fig. 2. Standard Is-a hierarchical graph

The subtyping relation is described as subtype <: supertype. When s <: q,
the necessary cost for the replacement of ¢ with s seems to be low. However,
it is probable that the cost for the replacement of s with ¢ is high. Therefore,
dt(ty,ts) < dt(ts,tq) should be true when ts <: t,. When the deepest supertype
of t4 and ¢, is tp, the normal type distance dt(tq,ts) is defined as follows.

[(x) ::= (depth of type = from < root >), (K root>>)=1
!
I

L) DIt () ~20(t))

dt(tg, ts) = f1+z<ts)mj’;% 20T = D) () FIE) T2)

ts <ttgNtg <ttp ANt <itp, = 1< U(tp) < U(ty) <I(ts)

0 e MUty (1) 20ty)) i) (1) F1(1) ~20(5,) 4
)T DUt) TACIE) ~ g+ 1) U +IlEy) 7200 1))

=0 < dt(tg,ts) < dt(ts,tq) <1

4 Component retrieval system: RetrievalJ

When ¢, represents a user’s query and c, represents a target component, DRD
(cq,cs) reflects the degree of adaptability of the target component to the user’s
query. Therefore, when retrieving components from the repository, if a prototype
component which satisfies a user’s query, particularly the interface requirements,
is given, DRD between the prototype and one of components stored in the repos-
itory can be used as the index for search ranking. This mechanism does not re-
quire additional information other than the component itself. In the example in
Fig.[3(a), the component C; is chosen as that which best satisfies a user’s query
Sg. We have developed a component retrieval system called RetrievalJ, in Java,
using the DRD technique. We prepared two types of systems: a stand-alone type
and a Web type. JavaBeans is the targeted component system.

We have also prepared the query generator. This generator is a visual tool
and can generate Report objects which express characteristic information about
the component, without the development of a prototype component. By using
this tool and giving specifications for a component and its interfaces visually, the
user can generate Report objects for comparison with the components stored
in the repository.

The repository is composed of description files which contain automatically
extracted component information. For the description format, we defined CSML
(Component Specification Markup Language) as the subset of XML language.

Retrieving Software Components Using Directed Replaceability Distance 159

using query-
generator

uengoar: com b caendarCaendargetBean Caindatean

Twe [vy [Taigel [, Distance

011431233765, | =
0027045,
00

CSMLofC1 | ifif;
% y

2)
automatic

automatic
extraction

extraction

00
O,
00

::Q: 1008353333333,
o ooess. [v

Ll

Cq: prototype }
™ component |

e

o [

Fig. 3. (a) retrieval using DRD (b) screenshots

Retrieval] is composed of the five main classes: RetrievalJ, Analyzer, Re-
port, ComparableElement, Translator. ComparableElement is the class
for comparison of characteristic information. Translator converts Report ob-
jects into ComparableElement objects corresponding to types of primitive
distances (structure, behavior, granularity).

RetrievalJ accepts the user’s query as the component, and outputs the
result of the search as a list form and an individual form. In the list form, all
components are ranked in order of the small size of each DRD to the user’s
query (Fig. Blb)-left side). Moreover, regarding the arbitrary component in the
list, primitive distances between the user’s query and the target component
are displayed in detail (Fig. B(b)-right side). Then the user can download the
arbitrary component from the search results.

Analyzer statically and dynamically analyzes a component. In the static
analysis, Analyzer collects the name of the component, the size of the com-
ponent, and structural information on the interfaces by introspecting a Bean-
Info object as meta information of the JavaBeans component. In the dynamic
analysis, Analyzer records the execution time of interfaces, the execution re-
sult of interfaces, and information on the value change of readable properties
by instantiating the component internally and invoking all of the interfaces of
the component using the initial/any value for interface arguments. Because the
component does not have any dependence on another by definition, the dynamic
analysis is automatically possible.

5 Evaluation

In practice, we have clarified that the structure is the most important among
the component characteristics, so we value the structural distance most in the
weight assignment. Moreover, because the component system has been currently
limited to JavaBeans, the importance of granularity is lowered in relation to the
behavior. Therefore, we use the retrieval result as ranked in order of the small size
of the DRD(cq, ¢s) ::= 0.5DRDg(cq,cs) +0.3DRDpg(cq, ¢s) +0.2DRDc(cq, Cs)-

As conventional methods, we use Spanoudakis’s similarity method ([SC94][7])
and Michail’s similarity method ([MN99][5]). Both methods are similar to our
method in that their preparation costs are extremely low. In [SC94], the com-
ponents are ranked high whose positions in the class inheritance hierarchy are

160 H.Washizaki and Y.Fukazawa

closest to the user’s query component. In [MN99], the components are ranked
high whose similarities of the set of terms to the user’s query component are
large with respect to term frequency.

We use 250 components provided in [T2[T3IT4JT5]T6/1718] as evaluation sam-
ples. From among all of the samples, we set 12 agreement groups, in which all
components are domain-specific, which functionally resembled each other: Calen-
dar(number of components : 5), ProgressBar(3), SMTP(3), POP3(3), Gauge(2),
Calculator(2), Clock(3), Finger(2), Stock Information(2), Scroll Bar(2), GUI for
SMTP (2), GUI for POP3(2). It is easy to replace a component in the agreement
group with another component in the same group. Therefore, when the compo-
nent is given as the user’s query from a certain group, the retrieval performance
is high if the components in the same group as the query are ranked high.

5.1 Recall and precision ratios

The recall ratio R(z) and the precision ratio P(z), concerning the order z of the
search results, are defined as follows.

R(z) = (number of components in the same group of the query within order «)
o (number of components in the same group of the query)
P(a) = (number of components in the same group of the query within order «)

x

We used a component Calendar[I5] from the Calendar group as the user’s
query for our method, [SC94] and [MN99]. The results in terms of recall and
precision ratios obtained using the three methods are shown in Fig. [@(a). The
results of our method for both the recall and precision ratios are always higher
than those of [SC94] and [MN99], so the retrieval performance of our method is
higher than that of either [SC94] or [MN99].

- [-M\!.‘f]
08 | e fsoeal

—— 0

2 [weaa)
dlacaal

preciion: Pld
rormaied recall RnormiGE!

agreemart puup G

Fig. 4. (a) Recall-Precision (b) Normalized Recall

This result originates in that components in the Calendar group have inter-
faces which provide a common function concerning the calendar domain, and
those interfaces are similar, particularly with respect to the structure. For ex-
ample, we discuss the interfaces which provide the acquisition function of the
selected day. Table [1 shows the interface structural distances (dis) between the
interfaces which are found to be in common using our method, when a compo-
nent Calendar[I5] is given as the user’s query. Table [also shows the ranks of

Retrieving Software Components Using Directed Replaceability Distance 161

components in the Calendar group using three methods. Those common inter-
faces are similar in terms of names and types of return. In our method, because
consideration is given to the structural similarity of interfaces, components in
the Calendar group are ranked high in comparison with all other components.

[SC94] considers only the class inheritance relation. Even if the functions
are the same, if the two components’ developers are different, the positions of
components in the class inheritance hierarchy are generally different. Therefore,
the retrieval performance of [SC94] is the lowest among those of the three meth-
ods. [MN99] considers the difference between interfaces, but the consideration is
limited to the name; the type of interface is not considered.

Table 1. Comparison of interface structures and result of ranking

component interface return dis |Our [SC94] [MN99]
Calendar[15j getResultSelectedDateAsString String - - - -
SSCalendar[17] getAllSelectedDates Message 0.067| 1 19 4
CalendarBean[14] |getSelectedDate String 0.011| 2 76 14
CalPanel[I7] getDate int 0.071] 5 20 5
CalendarViewer[12] | (none) (none) 0.187| 12 21 63

5.2 Normalized recall

The normalized recall Ry, orm (G) of an agreement group G is set as follows.

rank(c) ::= (rank of component ¢) |G| ::= (number of components in G)
N ::= (number of total components) Ryorm(G) :=1— %

Normalized recalls for all agreement groups obtained using the three methods
are shown in Fig.[4(b). A certain component in the same group as target G is used
as the user’s query. The results of our method indicate an equal and maximum
value to the result of [MN99] in three groups, and indicate a value higher than
the result of [MN99] in all other groups. With respect to [SC94], the results of our
method indicate a higher value in 10 groups. Moreover, the average value of our
method (0.9387) exceeds those of [SC94](0.7535) and [MN99](0.8659). Therefore,
the retrieval performance of our method is higher than the performances of
[SC94] and [MN99], regardless of the domain type of the user’s query.

5.3 Changeability of valuing characteristics

We have prepared two components which are the same for all interface structures:
Beanl has been implemented to function as a GUI label, and Bean2 does not
function at all. We use the structural distance (1.0DRDg) and the behavioral
distance (1.0DRDpg) as our methods. When the GUI label is given as the user’s
query, each measurement value of the two components as obtained using our
methods, [SC94] and [MN99] is shown in Table . [SC94] and [MN99] cannot
clarify the difference between Beanl and Bean2, because these methods do not
consider the behavior of the component. In our method, a user can recognize that
Beanl satisfies the query more closely than Bean2 by changing the characteristic
to which the user pays attention from the structure to the behavior.

162 H.Washizaki and Y.Fukazawa

Table 2. Similarity/distance of Beanl,Bean2 (result rank)

retrieval method Beanl (rank) Bean2 (rank)
[SCO4]: similarity 039346 (2) _ 0.39346 (2)
[MN99]: similarity 1362.08 (4) 1362.08 (4)
Our: structural distance 1.0DRDs | 0.03987 (1) 0.03987 (1)
Our: behavioral distance 1.0DRDp| 0.00096 (1) 0.02175 (84)

6 Conclusion

In this study, we have presented a new distance metric, DRD, and realized
a component retrieval system, RetrievalJ. Our approach is excellent with re-
spect to the preparation cost because additional information are not necessary.
Moreover, the user can change the degree of consideration for any characteristic
according to the user’s attention when retrieving. Retrieval] is available from
http://www.fuka.info.waseda.ac.jp/Project/CBSE/. We will verify the possibil-
ity of using RetrievalJ together with other retrieval methods.

References

1. J.Hopkins. Component Primer. Communications of the ACM, Vol.43, No.10 (2000)
=3

2. R.Meling, E.Montgomery, P.Ponnusamy, E.Wong, D.Mehandjiska. Storing and Re-
trieving Software Components: A Component Description Manager. Australian Soft-
ware Engineering Conference (2000) [I53][I53] 054,

3. S.Yacoub, H.Ammar, A.Mili. Characterizing a Software Component. International
Workshop on Component-Based Software Engineering (1999) [53]

4. R.Seacord, S.Hissam, K.Wallnau. Agora: A Search Engine for Software Components.
IEEE Internet Computing, Vol.2, No.6 (1998) [54]

5. A.Michail and D.Notkin. Assessing Software Libraries by Browsing Similar Classes,
Functions and Relationships. International Conference on Software Engineering
(1999) 54, 054 [T5H, 59

6. J.Penix and P.Alexander. Efficient Specification-Based Component Retrieval. Au-
tomated Software Engineering, Vol.6, No.2 (1996) [l

7. G.Spanoudakis and P.Constantopoulos. Measuring Similarity Between Software Ar-
tifacts. International Conference on Software Engineering and Knowledge Engineer-
ing (1994) 54

8. A.Zaremski and J.Wing. Signature Matching: a Tool for Using Software Libraries.
ACM Transactions on Software Engineering and Methodology, Vol.4, No.2 (1995)
L4

9. S.Lai and C.Yang. A Software Metric Combination Model for Software Reuse. Asia-
Pacific Software Engineering Conference (1998)

10. L.Cardelli. Type Systems. in Handbook of Computer Science and Engineering.
Chapter 103, CRC Press (1997) [Oh1

11. D.Platt. Essence of COM with ActiveX. Prentice Hall (2000)

12. J.Neil. JavaBeans Programming from the Ground Up. McGraw-Hill (1998) [I50]
(1611

13. E.Harold. JavaBeans: Developing Component Software in Java, IDG Books (1998)
1160

14. internet.com Corp. JARS.COM. http://www.jars.com/ [60], [61]

15. IBM Corp. alphaBeans. http://www.alphaworks.ibm.com/alphabeans/ [160] 160
1|

16. Digital Cat, LLC. Digital Cat’s Java Resource Center. http://www.javacats.com/
1160

17. Singapore Java Users Group. Showcase. http://www.sjug.org/showcase,/ 60, IGT],

el
18. K.Yasumatsu. KFC. http://openlab.ring.gr.jp/kyasu/

Generating Application Development Environments for
Java Frameworks

Markku Hakala', Juha Hautamaki', Kai Koskimies',
Jukka Paakki’, Antti Viljamaa®, Jukka Viljamaa®

'Software Systems Laboratory, Tampere University of Technology
P.O. Box 553, FIN-33101 Tampere, Finland
{markku.hakala, csjuha, kk}@cs.tut.fi
’Department of Computer Science, Universirty of Helsinki
P.O. Box 26, FIN-00014 University of Helsinki, Finland
{antti.viljamaa, jukka.viljamaa, jukka.paakki}@cs.helsinki.fi

An application framework is a collection of classes implementing the shared
architecture of a family of applications. A technique is proposed for defining
the specialization interface of a framework in such a way that it can be used to
automatically produce a task-driven programming environment for guiding the
application development process. Using the environment, the application
developer can incrementally construct an application that follows the
conventions implied by the framework architecture. The environment provides
specialization instructions adapting automatically to the application-specific
context, and an integrated source code editor which responds to actions that
conflict with the given specialization interface. The main characteristics and
implementation principles of the tool are explained.

1 Introduction

Product line architecture is a collection of patterns, rules and conventions for creating
members of a given family of software products [4, 14, 17]. Object-oriented
frameworks are a popular means to implement product line architectures [10]. An
individual application is developed by specializing a framework with application-
specific code, e.g., as subclasses of the framework base classes. The specialization
interface of a framework defines how the application-specific code should be written
and attached to the framework.

Typically, the documentation provided together with a framework describes
informally the specialization interface of the framework. Usually this is done simply
by giving examples of possible specializations. Unfortunately, such descriptions
cannot be used as the basis of building systematic support for the specialization
process. An attractive approach to solve this problem is to define the specialization
process of a framework as a "cookbook" [8, 18, 22, 23, 25]. Related approaches
include also motifs [19] and hooks [9]. The support offered by these approaches
ranges from improving the understanding of frameworks to providing algorithmic
recipes for separate specialization tasks. Our work continues this line of research, but

J. Bosch (Ed.): GCSE 2001, LNCS 2186, pp. 163-176, 2001.
© Springer-Verlag Berlin Heidelberg 2001

164 Markku Hakala et al.

we focus on issues that we feel are not adequately addressed so far. In particular,

these issues include:

1. Support for incremental, iterative and interactive specialization process. We
strongly believe that the specialization of a framework, or even its single hot spot,
should not be regarded as a predefined sequence of steps, far less an atomic,
parameterized action. The application developer should be able to execute the
specialization tasks in small portions, see their effect in the produced source code,
and go back to change something, if needed. This kind of working is inherent to
software engineering, and the tool should support it. Therefore, specialization
should be guided by a dynamically adjusting list of specialization steps that
gradually evolves based on the choices made in the preceding steps. In this way,
the application developer has better control and understanding of the process and
of the produced system.

2. Specialized specialization instructions. The problem with traditional framework
documentation is that it has to be written before the specialization takes place.
Therefore the documentation has to be given either with artificial examples or in
terms of the general, abstract concepts of the framework, not with the concrete
concepts of the specialization at hand. In an incremental specialization process the
tool can gather application-specific information (e.g., names of classes, methods
and fields) and gradually "specialize" the documentation as well. This makes the
specialization instructions much easier to follow.

3. Architecture-sensitive source-code editing. In our view, the architectural rules that
must be followed in the specialization can be seen much like a higher level typing
system. In the same sense as the specialization code must conform to the typing
rules of the implementation language, it must conform to the architectural rules
implied by the framework design. A framework-specific programming
environment should therefore enforce not only the static typing rules of the
programming language but also the architectural rules of the framework.

4. Open-ended specialization process. The specialization process should be open-
ended in the sense that it can be resumed even for an already completed
application. We feel that this is important for the future maintenance and extension
of the application.

In this paper we propose a technique to define the specialization interface of a

framework in such a way that it can be used to generate a task-driven application

development environment for framework specialization. We demonstrate our tool
prototype called FRED (FRamework EDitor) that has been implemented in Java and

currently supports frameworks written in Java. The approach is not however tied to a

particular language.

Different techniques to find and define the specialization interfaces for Java
frameworks using FRED have been discussed in [12], summarizing our experiences
with FRED so far. We have applied FRED to two major frameworks: a public domain
graphical editor framework (JHotDraw [15]) and an industrial framework by Nokia
intended for creating GUI components for a family of network management systems.
This paper focuses on the characteristics of the FRED tool and its implementation
principles.

In the next section we will present an overview of the FRED approach. In Section
3 we will discuss the underlying implementation principles of FRED. Related work is
discussed in Section 4. Finally, some concluding remarks are presented in Section 5.

Generating Application Development Environments for Java Frameworks 165

The FRED project has been funded by the National Technology Agency of Finland
and several companies. FRED is freely available at http://practise.cs.tut.fi/fred.

2 Basic Concepts in FRED

A basic concept for defining the specialization interface in FRED is a specialization
pattern. A specialization pattern is an abstract structural description of an extension
point (a hot spot) of a framework. Specialization pattern is typically of the same
granularity as a recipe or hook [9].

In principle, a specialization pattern can be given without referring to a particular
framework; for example, most of the GoF design patterns [11] can be presented as
specialization patterns. However, we have noted that this is usually less profitable for
our purposes: a framework-specific specialization pattern can be often written in a
way that provides much stronger support for the specialization process, even though
the specialization pattern followed one or more general design patterns. This is due to
the fact that the way a design pattern is implemented in a framework affects the exact
specialization rules and instructions associated with that pattern. Hence, for the
purposes of this paper we can assume that a specialization pattern is given for a
particular framework.

A specialization pattern is a specification of a recurring program structure. It can
be instantiated in several contexts to get different kinds of concrete structures. A
specialization pattern is given in terms of roles, to be played by structural elements of
a program, such as classes or methods. We call the commitment of a program element
to play a particular role a contract. Some role is played by exactly one program
element, some can be played by several program elements. Thus, a role can have
multiple contracts. This is indicated by the multiplicity of the role; it defines the mini-
mum and maximum number of contracts that may be created for the role. Combina-
tions are from one to one (1), from zero to one (?), from one to infinity (+), and from
zero to infinity (*). E.g., a specialization pattern may define two roles; a base class
and a derived class, where the base class role must have a single contract, but the
derived class role may have an arbitrary number of contracts. Respectively, a single
program element can have multiple contracts and participate in multiple patterns.

A role is always played by a particular kind of a program element. Consequently,
we can speak of class roles, method roles, field roles etc. For each kind of role, there
is a set of properties that can be associated with the role. For instance, for a class role
there is a property inheritance specifying the required inheritance relationship of each
class associated with that role. Properties like this, specifying requirements for the
concrete program elements playing the role are called constraints. It is the duty of the
tool to keep track of broken constraints and instruct the user to correct the situation.
Other properties affect code generation or user instructions; for instance, most role
kinds support a property default name for specifying the (default) name of the pro-
gram element used when the tool generates a default implementation for the element.

When a specialization pattern is framework-specific, certain roles are played by
fixed, unique program elements of the framework. We say that such roles are bound;
otherwise a role is unbound. Hence, a bound role is a constant that denotes the same
program element in every instantiation of the pattern, while unbound roles are
variables that allow a pattern to be applied in different contexts.

http://practise.cs.tut.fi/fred

166 Markku Hakala et al.

Specialization patterns, together with the contracts for the bound roles and the
framework itself, constitute a developer’s kit delivered for application programmers.
We call the process of creating the rest of the contracts casting. As each contract acts
as a bridge between a role and a suitable program element, casting essentially requires
the specializer to produce specialization-specific code for the contracts. The set of
contracts for a given software system is called a cast. It consists of the contracts
defined by bound roles as well as the contracts established by the framework
specializer. Together, the contracts convey the architectural correspondence between
the source-code and the framework specialization interface. If a pattern defines
relationships between roles, these relationships must manifest in the program
elements that are contracted to the roles. Thus, the connection between framework
and specialization-specific code are made explicit. It is also equally necessary to
define mutual relationships between the different parts of the specialization, an
important aspect often overlooked.

Casting is the central activity of framework specialization. Each contract is a step
required for developing an application as a specialization of a framework. In a sense,
casting can be regarded as the instantiation of specialization patterns. The main
purpose of FRED is to support the programmer in the casting process. This is
achieved by presenting missing and breached contracts as programming tasks that
usually ask the user either to provide or correct some piece of code. Based on the
relationships encoded in the pattern and the contracts already made, the tool is able to
suggest new contracts as the specialization proceeds, leading to an incremental and
interactive process which follows no single predetermined path.

Let us illustrate the concept of a specialization pattern with a simple example.
Suppose there is a graphical framework which can be extended with new graphical
shapes. The framework is designed in such a way that a new shape class must inherit
the framework class Shape and override its draw method. In addition, the new class
must provide a default constructor, and an instance of the new class must be created
and registered for the application in the main method of the application-specific class.

The required specialization pattern is given Table 1. FRED provides a dedicated
tool for defining the specialization patterns. However, we use here an equivalent
textual representation format to facilitate the presentation. In the example, we have
followed the naming convention: if a role is assumed to be played by a unique
program element of the framework (it is bound), it has the same name as that element.

In Table 1, the creator of the pattern has specified some properties for the roles.
Some properties, when not specified, have a default value provided by the tool.
Properties description and task title are exploited in the user interface for a general
description of the role and for the task of creating a contract, respectively (see Figure
1). Properties return type, inheritance and overriding are constraints specifying the
required return type of a method, the required base class of a class, and the method
required to be redefined by a method. Property source gives a default implementation
for a method or for a code fragment, while Insertion tag specifies the tag used in the
source to mark the location where this code fragment should be inserted. Tags are
written inside comments, in the form "#tag". Tags are used only in inserting new code
to an existing method.

Note that the definitions of properties may refer to other roles; such references are
of the form <#r>, where r is the identification of a role. By convention, if <#r>
appears within string-valued property specification (e.g., task title), it is replaced by
the name of the program element playing the role. This facility is used for producing

Generating Application Development Environments for Java Frameworks 167

adaptable textual specialization instructions. In constraints, references to other roles
imply relationships that must be satisfied by the program elements playing the roles.
For example, the class playing the role of SpecificShape must inherit the class playing
the role of Shape. The role SpecificShape is also associated with a multiplicity
symbol "+", meaning that there can be one or more contracts for this role for each
contract of Shape. However, as Shape is bound, it has actually only a single contract.

Table 1. Textual representation of a specialization pattern

NewShape
Bound roles Properties
Shape : class description Base class for all graphical figures.
draw : method description The drawing method.
Unbound roles Properties
ApplicationMain : class description The application root class that defines the entry
point for the application.
main : method description The method that starts the application.
type void
source Canvas ¢ = new Canvas();
/* #Canvasinitialization */
c.run();
args : parameter type String[]
position 1
creation : code insertion tag Canvaslnitialization
description Code creating a prototype instance of
<#SpecificShape> by invoking constructor
<#SpecificShape.defaultConstructor>.
task title Provide creation code for <#SpecificShape>
source c.add(new <#SpecificShape>());
SpecificShape+ : class description Defines a graphical figure by extending <#Shape>.
task title Provide a new concrete subclass for <#Shape>
inheritance <#Shape>
default name My<#Shape>
defaultConstructor : constructor | task title Provide a constructor for <#SpecificShape>
draw : method task title Override <#Shape.draw> to draw <#SpecificShape>
overriding <#Shape.draw>

Nesting of roles in Table 1 specifies a containment relationship between the roles,
which is an implicit constraint: if role r contains role s, the program element playing
role » must contain the program element playing role s. This makes the specialization
pattern structurally similar to the program it describes.

During casting, new contracts are created for the roles and associated with program
elements. This process is driven by the mutual dependencies of the roles and the
actions of the program developer, including the direct editing of the source code. The
framework cast consists of contracts which bind roles Shape and draw to their
counterparts in the framework. Given this information, FRED is able start by
displaying two mandatory tasks for the specializer. These are based on the roles
SpecificShape and ApplicationMain, since these roles do not depend on other
application-specific roles. The user can carry out the framework specialization by
executing these tasks and further tasks implied by their execution. Eventually there
will be no mandatory tasks to be done, and the specialization is (at least formally)
complete with respect to this extension point.

168 Markku Hakala et al.

Roughly speaking, FRED generates a task for any contract that can be created at
that point, given the contracts made so far. For example, it is not possible to create a
contract for draw unless there is already a contract for SpecificShape, because draw
depends on SpecificShape. A task prompting the creation of a contract is mandatory if
the lower bound of the multiplicity of the corresponding role is 1, and there are no
previous contracts for the role; otherwise the task is optional. FRED generates a task
prompt also for an existing contract that has been broken (e.g., by editing actions).
We will discuss the process of creating contracts in more detail in Section 3.

The organization of the graphical user interface is essential for the usability of this
kind of tool, and the current form is the result of rather long evolution. We have found
it important that the user can see the entire cast in one glance, and that a task is shown
in its context, rather than as an item in a flat task list. For these reasons the central
part of the user interface shows the current cast structured according to the contain-
ment relationship of the associated roles. Since this relationship corresponds to the
containment relationship of the program elements playing the roles, the given view
looks very much like a conventional structural tree-view of a program. The tasks are
shown with respect to this view: for each contract selected from the cast view, a sepa-
rate task pane shows those tasks that produce or correct contracts under the selected
contract, according to the containment relationship of the corresponding roles. For
example, if a contract has been created for SpecificShape, and this contract is select-
ed, the task pane displays a (mandatory) task for creating a contract for the draw role.

@]Fled : C:\Fred\projectsiMyT ool _[O] x|
File Edit View Toolz Help
Architecturs [

Architecture] a Java Editor
@ &P MyTool ||@| ﬂ P | s lMyTooI l
¢ P ou |
@& PanelController -
@ Panelview public class MyTool { L]
@ 7 LogicalExtensions
@ NewsShape
& NewlserType

public void main (String[] args) {
Canvas ©c = new Canvas ()]
M gCanvasInitialization */
c.add(new Circle{));
c.run £3;

ki -
Packagi...] =
Packaging [Fyrors [Task Wisw
[F] Defaul package - | Task View =
MewwShape (in MyTooliLogicalExtensions)] Provide creation code Tor Square
B circle
Bl MyToal © B Circle
Bl Shape & B souare - -
= B @ B myTool Code creating a prototype instance of
Square . g
@ kg main (jave lang String) Squate by invoking constructor
[0 crestion Squarer).
¢ B cshape
£ draw ()

Ready.

Fig. 1. User interface of FRED

The user interface of FRED is shown in Figure 1. It contains a number of views to
manage Java projects and the casting process. In the figure, the application developer
has opened the Architecture View, which shows the project in terms of subsystems
and instantiated specialization patterns. The Task View shows the existing contracts

Generating Application Development Environments for Java Frameworks 169

in the left pane. Tasks related to a selected contract are shown in the right pane of the
Task View. A small red circle in the left pane indicates that there are mandatory tasks
related to that contract, a white circle indicates an optional task. The lower part of the
right pane shows the instructions associated with the role (that is, given by property
description).

Figure 1 shows the FRED user interface in a situation where the application
developer has already carried out the necessary tasks related to a new subclass Circle.
In addition, the developer has done an optional task for creating yet another sublass
named Square, and the resulting mandatory task for providing its draw method. The
remaining mandatory task is indicated by a red circle. This task is selected in the
figure, and the user is about to let the tool generate the creation code at the
appropriate position.

To carry out the specialization the developer needs to complete all the rest of the
mandatory tasks, and the mandatory tasks resulting from the completion of these
tasks. However, this process need not be a linear one. A mechanism is provided to
undo contracts, providing the means to backtrack the instantiation process and
reconsider the decisions made.

Although the example is very simple, it demonstrates our main objectives. The
specialization of the framework is an interactive, open-ended process where the
application developer gets fine-grained guidance on the necessary specialization tasks
and their implications in the source code. The specialization instructions are adapted
to the application context (see the task title and instructions in Figure 1). The source
editor is tightly integrated with the casting process: for example, if the user accidently
changes the base class of Circle by editing, the tool generates a new task prompting
the user to correct the base class. Therefore, much like a compiler is able to check
language-specific typing, FRED enforces architecture-specific typing rules. If the user
then re-edits the source and fixes the base class, the task automatically disappears.

3 Implementation

To understand how the tool fulfils its responsibilities we have to investigate the
specialization patterns and their interpretation little deeper. A specialization pattern,
as presented in previous chapters, is given as a collection of roles, each defined by its
properties. The approach permits quite arbitrary properties and kinds of roles, and
indeed we consider the independence of exact semantics (provided by these
primitives) as one of the principal strengths of our approach. The current FRED
implementation offers one alternative set of primitives tailored for Java. Changing the
set of primitives it is possible to turn FRED into a development environment for a
different language, a different paradigm or even a different field of engineering.

The properties supported by the current FRED implementation can be roughly
categorized into constraints and templates. A constraint attaches a requirement on a
role or a relationship between two roles. The constraints must be satisfied by the
program elements playing a role, and can be statically verified by FRED. A template
in turn is used for generating text, mostly code, instructions or documentation.
Templates support a form of macro expansion that makes it possible to generate
context-specific text.

170 Markku Hakala et al.

Properties can refer to other roles of the pattern. Whenever the definition of role
refers to role s (at least once) or role r is enclosed in role s, we say there is
dependency from r to s, or that the role » depends on s or has a dependency to s. From
a pattern specification it is possible to construct a directed graph, whose nodes and
edges correspond to roles and dependencies, respectively. In addition, each node of
the graph carries the multiplicity of the associated role. The resulted graph describes
declaratively the process of casting, and is interpreted by the tool to maintain a list of
tasks. Actually, the bound roles and dependencies to them can be omitted from this
graph, as being constant bound roles do not change the course of the casting process.
Likewise, the dependencies that can be deduced from other dependencies can be
discarded from the graph, i.e., a dependency from r to s can be removed if there is
directed path from r to s in the graph.

A graph based on the specialization pattern NewShape, from Chapter 2, is
presented in Figure 2. In this diagram, the boxes denote roles. The label of a node is
made up of the role name and a multiplicity symbol. A dependency is presented by an
arc, or nesting in case the role is nested in the original specification. In addition to
denoting an edge, nesting works as a name scope, as in the original pattern
specification. Different kinds of visual decorations are used on the nodes to denote
their kind. A class role is presented with a thick border and a method role with a
thinner one. A parameter role is circular and a code snippet is denoted with bent
corner. Bound roles are absent from the diagram. Nesting, decorations and omitted
nodes are all just means of compacting the graph and carry no specific semantics in
the discussion to follow.

ApplicationMain SpecificShape+

md.m _________________ defaultConstructor

creation g

Fig. 2. A diagram of the NewShape specialization pattern

The pattern graph is the basis of casting. The process starts by selecting a pattern and
creating a cast for it. Initially, the cast consists of contracts for bound roles. For each
unbound role, a number of contracts must be eventually established in the cast. The
state of the cast at any point during the casting can be presented as a graph of
contracts. The edges of also this graph are called dependencies, and are implied by the
dependencies of the pattern. To be more precise, if a role r depends on role s, each
contract of role r depends on some unique contract of role s, determined
unambiguously during the casting. In the cast graph, we need to include only
contracts established by the specializer and can thus ignore the contracts for bound
roles and the related dependencies. Likewise, as with pattern graphs we can omit
redundant dependencies.

Figure 3 presents a diagram of an example cast graph (on the left), and its relation
to some specialization-specific source code (on the right). The diagram presents some
point in the middle of casting of NewShape pattern. We use a notation similar to
presenting pattern graphs. In the diagram, the boxes denote contracts, and the arcs and

Generating Application Development Environments for Java Frameworks 171

nesting denote the dependencies. The label of a node refers to the role associated with
the contract. A colon is used before the label to mark that the node doesn’t represent a
role but a contract of the role. Similar to pattern graphs, we use border decorations on
the nodes, depending on the kind of the role the contract stands for. It is easy to read
from the figure which parts of code play which roles in the pattern. The figure also
shows that the dependencies between roles (e.g. from creation role to SpecificShape
role) have implied dependencies between contracts. This is also evident in the nesting
of contracts.

: ApplicationMain

public class MyTool {

h 4

1 mai

public static void main (|String [] args|)

Canvas c = new Canvas ();
> /* # CanvasInitialization */

c.run ();

}

public class Circle extends Shape {

}

: SpecificShape

h 4

Fig. 3. An example of cast that relates specialization code to the roles of the pattern

The function of the development tool can be defined in terms of the pattern graph and
the cast graph. The exact process of casting can be reduced to nondestructive graph
transformations on the cast graph, based on the pattern graph. In fact, the pattern
graph can be seen as a relatively restricted, but compact way of specifying a graph
grammar. This representation can be derived systematically to a more conventional
presentation of a graph grammar [6], a set of transformation rules. We shall now
describe the process of casting more accurately.

A graph grammar can be defined with a start graph and a set of graph
transformation rules. The start graph of a grammar produced from a pattern graph
contains a single node, start role S, that besides acting as a starting point of graph
transformations carries no special meaning. The transformation rules in turn, are
generated by the algorithm in Figure 4.

For each role r in the pattern graph:
R := A graph that contains r and all roles and dependencies on every directed path that
goes from r to a sink of the pattern graph.
If R contains only 7 then add start role S to R
L :=R - r and all dependencies from r.
Add transformation rule L ::= R to the grammar.
End

Fig. 4. An algorithm that generates the transformation rules from a pattern specification

This results in a simple grammar, consisting of a single non-destructive transforma-
tion rule for each role of the original pattern. The rules are expressed in terms of roles

172 Markku Hakala et al.

and are responsible in generating a network of contracts, the cast. Moreover, due to
the regularity of the generated rules, an application of any of the rules results in a
single new contract and its dependencies.

In Figure 5 we see a graph grammar that has been produced from the pattern graph
presented in Figure 2. As there were seven roles in the pattern graph, there are seven
numbered rules. The full name of the associated role, along with the multiplicity
symbol is placed above each rule.

1. ApplicationMain 5. SpecificShape.draw

s . SpecificShape
. ApplicationM:

2. SpecificShape+ 6. ApplicationMain.main.args

= SpecificShape ApplicationMain
ApplicationMain

3. ApplicationMain.main

ApplicationMain

main

ApplicationMain 7. ApplicationMain.main.creation

ApplicationMain ApplicationMain

main main

4. SpecificShape.defaultConstructor
pecificShape.def creation %
SpecificShape
SpecificShape = y
defaultConstructor | | | |

SpecificShape SpecificShape

Fig. 5. The graph grammar of NewShape, derived from its pattern graph

Casting starts by creating a cast with a special start contract, a contract of start role S.
It's only purpose is to start the casting process and is not bound to any program
element. The transformation rules, whose left hand sides contain only S, are first
applicable. In general, the left hand side of the transformation rule is matched against
the current cast, and the rule is applicable for each found match, i.e., for each suitable
sub-graph of the cast. Then, the matched sub-graph is substituted with the right hand
side of the rule, resulting in a new contract and a set of dependencies in the cast
graph. The multiplicity of a role constrains the number of times the rule can be
applied for each different sub-graph. E.g., the rule 2 above is matched always, rule 5
is matched only once for each contract of SpecificShape, and rule 7 matched for each
pair of contracts of main and SpecificShape.

Whenever a transformation rule is applicable for some match, the tool applies the
rule to produce a new contract for that match. This contract is incomplete as it is not
bound to any program element at that time. An incomplete contract corresponds to a
task in the user interface, shown to the developer as a request to provide a new
program element to complete the contract. The task is either mandatory or optional,

Generating Application Development Environments for Java Frameworks 173

depending on the multiplicity and number of contracts already created for the same
match. Once the contract is completed by a suitable program element, it is added to
the cast making new transformation rules applicable.

As an example, look at Figure 3. At that point the user has already created a class
for SpecificShape, as well as the main class with the main method. At this point, the
user may apply rule 2 to create a new SpecificShape, or rules 4 or 5 to continue with
the existing SpecificShape — the Circle, or with rule 7 to add the intialization code
within the main method. These choices are presented as programming tasks, from
which only the task for rule 2 is optional. Figure 6 presents the situation after
application of transformation rule 7. A new contract has been added to the cast and
made available for matching.

: ApplicationMain
» public class MyTool {

: main
_______________________ public static void main Lstring [1 args|) {

e Canvas ¢ = new Canvas ();
> /* # CanvasInitialization */

- creation P\‘ c.add (new Circle()); ‘

c.run ();

public class Circle extends Shape {

}

: SpecificShape

Fig. 6. Result of an application of a grammatical rule to the cast graph of Figure 3

Code generation, adaptive specialization instructions, constraints and other properties
are evaluated in the context of a single contract, always linked to a graph of contracts
in a way determined by the piecemeal application of grammatical rules. This means
that whenever a property refers to role r, this reference can be unambiguously
substituted by a contract of r obtained by following the dependencies in the cast
graph. Furthermore, this can be substituted by a reference to the associated program
element. E.g., in the case of the contract of for the role creation in Figure 6, all
references to SpecificShape can be substituted with references to the class Circle.
Thus, the constraints can be evaluated separately for each contract and it is possible to
provide contract-specific instructions and default implementation, like the line of code
in this case.

Most contracts are not automatically determined based on the source code, but
instead explicitly established by the developer by carrying out tasks. As a side effect,
some code can be generated, but a contract can also be established for an existing
piece of code, thus allowing a single program element to play several roles. Once a
contract is established for a piece of code, the environment can use this binding for
ensuring that the code corresponds to the constraints of the role. For this purpose,
FRED uses incremental parsing techniques to constantly maintain an abstract syntax
tree of the source code and can thus provide immediate response for any inappropriate
changes to the code.

174 Markku Hakala et al.

4 Related Work

To tackle the complexities related to framework development and adaptation we need
means to document, specify, and organize them. The key question in framework
documentation is how to produce adequate information dealing with a specific
specialization problem and how to present this information to the application
developer. A number of solutions have been suggested, including framework
cookbooks [18, 25], smartbooks [23], and patterns [16].

As shown in this paper, an application framework's usage cannot be adequately
expressed as a static and linear step-by-step task list, because a choice made during
the specialization process may change the rest of the list completely. That is why
cookbooks [18, 25], although a step to the right direction, are not enough. Our model
can be seen as an extension of the notion of framework cookbooks.

Another advanced version of cookbooks is the SmartBooks method [23]. It extends
traditional framework documentation with instantiation rules describing the necessary
tasks to be executed in order to specialize the framework. Using these rules, a tool can
be used to generate a sequence of tasks that guide the application developer through
the framework specialization process [22]. This reminds our model, but whereas they
provide a rule-based, feature-driven, and functionality-oriented system, our approach
is pattern-based, architecture-driven and more implementation-oriented.

Froehlich, Hoover, Liu and Sorenson suggest semiformal template on describing
specialization points of frameworks [9] in the form of hooks. A hook presents a recipe
in a form of a semiformal, imperative algorithm. This algorithm is intended to be
read, interpreted and carried out by the framework specializer.

Fontoura, Pree, and Rumpe present a UML extension UML-F to explicitly describe
framework variation points [8]. They use a UML tagged value (a name-value-pair that
can be attached to a modeling element to extend its properties) to identify and
document the hot spots such that each of the variation point types has its own tag.

Framework adaptation is considered to be a very straightforward process in [8].
UML-F descriptions are viewed as a structured cookbook, which can be executed
with a wizard-like framework instantiation tool. This vision resembles closely that of
ours, but we see the framework specialization problem to be more complex. The
proposed implementation technique is based on adapting standard UML case tools,
which does not directly support FRED-like interactivity in framework specialization.

The specification of an architectural unit of a software system as a pattern with
roles bound to actual program elements is not a new idea. One of the earliest works in
this direction is Holland’s thesis [13] where he proposed the notion of a contract. Like
UML's collaborations, and unlike our patterns, Holland’s contracts aimed to describe
run-time collaboration. After the introduction of design patterns [11], various
formalizations have been given to design patterns resembling our pattern concept (for
example, [7, 20, 21, 26]), often in the context of specifying the hot spots of
frameworks. Our contribution is a pragmatic, static interpretation of the pattern
concept and the infrastructure built to support its piecemeal application in realistic
software development. In fact, our patterns can be seen as small pattern languages [2]
for writing software.

In [5] Eden, Hirshfeld, and Lundqvist present LePUS, a symbolic logic language
for the specification of recurring motifs (structural solution aspect of patterns) in
object-oriented architectures. They have implemented a PROLOG based prototype

Generating Application Development Environments for Java Frameworks 175

tool and show how the tool can utilize LePUS formulas to locate pattern instances, to
verify source code structures' compliance with patterns, and even to apply patterns to
generate new code.

In [1] Alencar, Cowan, and Lucena propose another logic-based formalization of
patterns to describe Abstract Data Views (a generalization of the MVC concept).
Their model resembles ours in that they identify the possibility to have (sub)tasks as a
way to define functions needed to implement a pattern. They also define
parameterized product texts corresponding to our code snippets.

We recognize the need for a rigor formal basis for pattern tools, especially for code
validation. We emphasize support for adaptive documentation and automatic code
generation instead of code validation.

5 Conclusions

We have presented a new tool-supported approach to architecture-oriented
programming based on Java frameworks. We anticipate that application development
is increasingly founded on existing platforms like OO frameworks. This development
paradigm differs essentially from conventional software development: the central
problem is to build software according to the rules and mechanisms of the framework.
So far there is relatively little systematic tool support for this kind of software
development. FRED represents a possible approach to produce adequate environ-
ments for framework-centric programming. A framework can be regarded, in a broad
sense, as an application-oriented language, and FRED is a counterpart of a language-
specific programming environment. Our experiences with real frameworks confirm
our belief that the fairly pragmatic approach of FRED matches well with the practical
needs. Our future work includes integration of FRED with contemporary IDEs and
building FRED-based support for standard architectures like Enterprise Java Beans.

References

1. Alencar P., Cowan C., Lucena C., A Formal Approach to Architectural Design Patterns. In
Proc. 3rd International Symposium of Formal Methods Europe, 1996, 576-594.

2. Alexander C., The Timeless Way of Building, Oxford University Press, New York, 1979.

3. Boris Bokowski, CoffeeStrainer - Statically-Checked Constraints on the Definition and Use
of Types in Java, Proceedings of ESEC/FSE '99, Springer-Verlag.

4. Bosch J., Design & Use of Software Architectures — Adopting and Evolving a Product-
Line Approach. Addison-Wesley, 2000.

5. Eden A., Hirshfeld Y. Lundqvist K. LePUS — Symbolic Logic
Modeling of Object Oriented Architectures: A Case Study. NOSA '99 Second Nordic
Workshop on Software Architecture, University of Karlskrona/Ronneby, Ronneby,
Sweden, 1999.

6. Ehrig H., Taentzer G., Computing by Graph Transformation: A Survey and Annotated
Bibliography, Bulletin of the EATCS, 59, June 1996, 182-226.

7. Florijn G., Meijers M., van Winsen P., Tool Support for Object-Oriented Patterns. In: Proc.
ECOOP ‘97 (LNCS 1241), 1997, 472-496.

8. Fontoura M., Pree W., Rumpe B., UML-F: A Modeling Language for Object-Oriented
Frameworks. In: Proc. ECOOP '00 (LNCS 1850), 2000, 63-83.

176

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Markku Hakala et al.

Froehlich G., Hoover H., Liu L., Sorenson P., Hooking into Object-Oriented Application
Frameworks. In: Proc. ICSE '97, Boston, Mass., 1997, 491-501.

Fayad M., Schmidt D., Johnson R., (eds.), Building Application Frameworks — Object-
Oriented Foundations of Framework Design. Wiley 1999.

Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns — Elements of Object-
Oriented Software Architecture. Addison-Wesley, 1995.

Hakala M., Hautamiki J., Koskimies K., Paakki J., Viljamaa A., Viljamaa J.: Annotating
Reusable Software Architectures with Specialization Patterns. In: Proc. WICSA 01,
Springer 2001, to appear.

Holland I., The Design and Representation of Object-Oriented Components. Ph.D. thesis,
Northeastern University, 1993.

Jacobson 1., Griss M., Jonsson P., Software Reuse — Architecture, Process and
Organization for Business Success. Addison-Wesley, 1997.

JHotDraw 5.1 source code and documentation. http:// members.pingnet.ch/gamma/JHD-
5.1.zip, 2001.

Johnson R.: Documenting Frameworks Using Patterns. In: Proc. OOPSLA '92, Vancouver,
Canada, October 1992, 63-76.

Jazayeri M., Ran A., van der Linden F., Software Architecture for Product Families.
Addison-Wesley, 2000.

Krasner G., Pope S., A Cookbook for Using the Model-View-Controller User Interface
Paradigm in Smalltalk-80. Object-Oriented Programming, 1988.

Lajoire R., Keller R., Design and Reuse in Object Oriented Frameworks: Patterns,
Contracts and Motis in Concert. In: Object Oriented Technology for Database and
Software Systems, Alagar V., Missaoui R. (eds.), World Scientific Publishing, Singapore,
1995, 295-312.

Meijler T., Demeyer S., Engel R., Making Design Patterns Explicit in FACE — A
Framework Adaptive Composition Environment. In: Proc. ESEC '97 (LNCS 1301), 94-111.
Mikkonen T., Formalizing Design Patterns. In: Proc. 20" International Conference on
Software Engineering (ICSE '98), IEEE Press, 1998, 115-124.

Ortigosa A., Campo M., Salomon R., Towards Agent-Oriented Assistance for Framework
Instantiation. In Proc. OOPSLA '00, Minneapolis, Minnesota USA, ACM SIGPLAN
Notices, 35, 10, 2000, 253-263.

Ortigosa A., Campo M., SmartBooks: A Step Beyond Active-Cookbooks to Aid in
Framework Instantiation. Technology of Object-Oriented Languages and Systems 25, June
1999, IEEE Press. ISBN 0-7695-0275-X

Pasetti A., Pree W., Two Novel Concepts for Systematic Product Line Development. In:
Donohoe P. (ed.), Software Product Lines: Experience and Research Directions (First
Software Product Lines Conference, Denver, Colorado), Kluwer Academic Publishers,
2000.

Pree W., Design Patterns for Object-Oriented Software Development. Addison-Wesley,
1995.

Riehle R., Framework Design — A Role Modeling Approach. Ph.D. thesis, ETH Ziirich,
Institute of Computer Systems, February 2000.

Author Index

AfBmann, Uwe, 58 Lowe, Welf, 58
Attardi, Giuseppe, 118 Lopez-Herrejon, Roberto E., 10
Ludwig, Andreas, 58
Bachmendo, Boris, 80
Batory, Don, 10 Musser, David, 106
Biggerstaft, Ted J., 1
Nicolet, Jean-Daniel, 92
Carlson, C. Robert, 140

Cisternino, Antonio, 118 Paakki, Jukka, 163
Coplien7 James O_’ 70 Pulvermﬁller, Elke, 70
de Bruin, Hans, 128 Schupp, Sibylle, 106
Speck, Andreas, 70
Fukazawa, Yoshiaki, 153 Swe, Soe Myat, 36
Gregor, Douglas, 106 Unland, Rainer, 80
Hakala, Markku, 163 van Vliet, Hans, 128
Hanenberg, Stefan, 80 Viljamaa, Antti, 163
Hautamaéki, Juha, 163 Viljamaa, Jukka, 163
Heuzeroth, Dirk, 58 Vrani¢, Valentino, 48
Jarzabek, Stan, 36 Washizaki, Hironori, 153

Wijnstra, Jan Gerben, 25
Kim, Jaehyoun, 140
Koskimies, Kai, 163 Zhang, Hongyu, 36

	Generative and Component-Based Software Engineering
	Preface
	Organization
	Table of Contents
	A Characterization of Generator and Component Reuse Technologies
	Introduction
	Concrete Components
	Composition-Based Generators
	Pattern-Directed Generators
	Reorganizing Generators
	Inference-Based Generators
	Conclusion
	References

	A Standard Problem for Evaluating Product-Line Methodologies
	1 Introduction
	2 A Standard Problem: The Graph Product Line
	3 GenVoca
	3.1 GPL
	3.2 Mixin-Layers

	4 Graph Implementation
	4.1 Adjacency Lists Representation (G)
	4.2 Neighbor List Representation (GN)
	4.3 Edge-Neighbor Representation (GEN)

	5 Profiling Results
	6 Conclusions
	7 References

	Components, Interfaces and Information Models within a Platform Architecture1
	Introduction
	Product Population Platform
	Components, Interfaces and Information Models
	Approach
	Platform Definition
	Platform Architecture
	Dealing with Diversity
	Defining Components, Interfaces and Information Models

	Experiences
	Concluding Remarks
	References

	XVCL Approach to Separating Concerns in Product Family Assets
	1 Introduction
	2 RelatedWork
	3 The CAD Domain Overview
	3.1 The Initial CAD System
	3.2 Variants in CAD Product Family

	4 XVCL: An XML-based Variant Configuration Language
	5 Applying XVCL in Handling Variants in CAD Domain
	5.1 Handling Variants within Concerns
	5.2 Specification Frame (SPC)
	5.3 Composition
	5.4 Handling Variants in CAD DomainModel
	5.5 Variant Dependencies

	6 Conclusions
	Acknowledgments
	Reference

	AspectJ Paradigm Model: A Basis for Multi-paradigm Design for AspectJ*
	Introduction
	Multi-paradigm design for C++
	Feature Modeling
	Applying Feature Modeling to Multi-paradigm Design
	Variability and Family Tables
	Variability Dependency Graphs

	AspectJ Paradigms
	Transformational Analysis
	An Example: Text Editing Buffers
	Transformational Analysis Outline

	Conclusions and Further Research

	Aspect-Oriented Configuration and Adaptation of Component Communication
	Communication Scenario
	Approach
	Modularized Communication Model
	Analyses
	Configuration
	System (Re-)Production

	Related Work
	Conclusions and Future Work

	A Version Model for Aspect Dependency Management
	 Introduction and Problem
	Version Model
	Conditions
	Related Work
	Summary and Conclusion

	An Object Model for General-Purpose Aspect Languages
	1 Introduction
	2 Motivation
	3 AspectJ
	3.1 Join Points
	3.2 Pointcuts
	3.3 Advice
	3.4 Aspects

	4 Object Model of Sally
	4.1 Join Points
	4.2 Pointcuts
	4.3 Advices / Pointcut Methods
	4.4 Aspects

	5 Related Work
	6 Conclusion and Further Work
	References

	Generic Visitor Framework Computing Statistical Estimators
	Introduction
	Problem Description
	The Visitor Pattern
	An Efficient Power Algorithm
	The Summator Template
	Implementing the Interface
	Packing All Together
	Conclusion
	References

	Base Class Injection
	Introduction
	Adapting to New Interfaces
	Base Class Injection
	Implementation
	Injecting a Base Class into a Receiver
	Overriding Virtual Function Injections
	Preparing the Receiver
	Collecting Injected Base Classes

	Related Work
	Conclusion

	Reflection Support by Means of Template Metaprogramming
	1 Introduction
	2 C++ Template Metaprogramming
	3 C++ Reflection
	4 Case Study: A Relational Object Table
	5 Conclusions
	References

	Scenario-Based Generation and Evaluation of Software Architectures
	Introduction
	Running Example: Resource Management (RM)
System
	Exploring Design Dimensions for the RM System
	User Interface (UI)
Layer
	Business Logic (BL)
Layer
	Data Management (DM)
Layer

	Generating and Evaluating Architectures
	Elaborating Architectures for the RM System
	Filling in the Layers
	Feature Interaction
	Crosscutting Layers

	Concluding Remarks and Future Work

	The Role of Design Components in Test Plan Generation
	1. Introduction
	2. Software Development Methodology
	3. High-Level Design
	3.1 Use Case Description
	3.2. Interaction Diagrams

	4. Design Units
	5. Testing
	5.1 Test Plan Generation
	5.2 Software Test Metrics
	5.2.1 Most Critical Scenario
	5.2.2 Most Reusable Components

	6. Conclusion
	References

	Retrieving Software Components Using Directed Replaceability Distance
	Introduction
	Component retrieval
	Directed Replaceability Distance
	Component retrieval system: RetrievalJ
	Evaluation
	Recall and precision ratios
	Normalized recall
	Changeability of valuing characteristics

	Conclusion

	Generating Application Development Environments for Java Frameworks
	1 Introduction
	2 Basic Concepts in FRED
	3 Implementation
	4 Related Work
	5 Conclusions
	References

	Author Index

